Structure and Evolution of Online Social Networks

  • Saptarshi Ghosh
  • Niloy Ganguly
Part of the Intelligent Systems Reference Library book series (ISRL, volume 65)


Social networks are complex systems which evolve through interactions among a growing set of actors or users. A popular methodology of studying such systems is to use tools of complex network theory to analyze the evolution of the networks, and the topological properties that emerge through the process of evolution. With the exponential rise in popularity of Online Social Networks (OSNs) in recent years, there have been a number of studies which measure the topological properties of such networks. Several network evolution models have also been proposed to explain the emergence of these properties, such as those based on preferential attachment, heterogeneity of nodes, and triadic closure. We survey some of these studies in this chapter. We also describe in detail a preferential attachment based model to analyze the evolution of OSNs in the presence of restrictions on node-degree that are presently being imposed in all popular OSNs.


Online social networks topology evolution complex network theory degree cutoffs preferential attachment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbasi, A., Hossain, L., Leydesdorff, L.: Betweenness centrality as a driver of preferential attachment in the evolution of research collaboration networks. Journal of Informetrics 6(3), 403–412 (2012)CrossRefGoogle Scholar
  2. 2.
    Ahn, Y.-Y., Han, S., Kwak, H., Moon, S., Jeong, H.: Analysis of topological characteristics of huge online social networking services. In: Proceedings of ACM International Conference on World Wide Web (WWW), pp. 835–844 (2007)Google Scholar
  3. 3.
    Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Reviews of Modern Physics 74(1), 47–97 (2002)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Allamanis, M., Scellato, S., Mascolo, C.: Evolution of a location-based online social network: analysis and models. In: Proceedings of ACM Internet Measurement Conference (IMC) (2012)Google Scholar
  5. 5.
    Backstrom, L., Boldi, P., Rosa, M., Ugander, J., Vigna, S.: Four degrees of separation. arXiv:1111.4570 [cs.SI] (2012)Google Scholar
  6. 6.
    Bagrow, J.P., Brockmann, D.: Natural emergence of clusters and bursts in network evolution. Phys. Rev. X 3, 021016 (2013)Google Scholar
  7. 7.
    Baluja, S., Seth, R., Sivakumar, D., Jing, Y., Yagnik, J., Kumar, S., Ravichandran, D., Aly, M.: Video suggestion and discovery for Youtube: taking random walks through the view graph. In: Proceedings of ACM International Conference on World Wide Web (WWW), pp. 895–904 (2008)Google Scholar
  8. 8.
    Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Ben-Naim, E., Krapivsky, P.L.: Popularity-driven networking. Europhysics Letters 97(4), 48003 (2012)CrossRefGoogle Scholar
  10. 10.
    Bianconi, G., Barabási, A.-L.: Competition and multiscaling in evolving networks. Europhysics Letters 54(4), 436 (2001)CrossRefGoogle Scholar
  11. 11.
    Bonato, A., Hadi, N., Horn, P., Pralat, P., Want, C.: Models of on-line social networks. Internet Mathematics 6, 285–313 (2011)CrossRefGoogle Scholar
  12. 12.
    Bonato, A., Janssen, J., Pralat, P.: A geometric model for on-line social networks. In: Proceedings of Workshop on Online Social Networks (WOSN) (June 2010)Google Scholar
  13. 13.
    Caldarelli, G., Capocci, A., De Los Rios, P., Muñoz, M.A.: Scale-free networks from varying vertex intrinsic fitness. Physical Review Letters 89, 258702 (2002)CrossRefGoogle Scholar
  14. 14.
    Catanzaro, M., Caldarelli, G., Pietronero, L.: Assortative model for social networks. Physical Review E 70, 037101 (2004)Google Scholar
  15. 15.
    Catone, J.: Twitter’s Follow Limit Makes Twitter Less Useful (August 2008),
  16. 16.
    Cattuto, C., Schmitz, C., Baldassarri, A., Servedio, V.D.P., Loreto, V., Hotho, A., Grahl, M., Gerd, S.: Network properties of folksonomies. AI Communications 20, 245–262 (2007)MathSciNetGoogle Scholar
  17. 17.
    Cha, M., Haddadi, H., Benevenuto, F., Gummadi, K.P.: Measuring user influence in Twitter: the million follower fallacy. In: Proceedings of AAAI International Conference on Weblogs and Social Media (ICWSM) (May 2010)Google Scholar
  18. 18.
    Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Review 51(4), 661–703 (2009)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    de Solla, P.: Networks of scientific papers. Science 149(3683), 510–515 (1965)CrossRefGoogle Scholar
  20. 20.
    Erdös, P., Rényi, A.: On random graphs, I. Publicationes Mathematicae (Debrecen) 6, 290–297 (1959)MATHMathSciNetGoogle Scholar
  21. 21.
    Erdos, P., Renyi, A.: On the strength of connectedness of a random graph. Acta Mathematica Hungarica 12, 261–267 (1961)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Estrada, E.: Spectral scaling and good expansion properties in complex networks. Europhysics Letters 73(4), 649 (2006)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Ferrara, E.: A large-scale community structure analysis in Facebook. arXiv:1106.2503 [cs.SI] (2012)Google Scholar
  24. 24.
    Ferrara, E., Fiumara, G.: Topological features of online social networks. Communications on Applied and Industrial Mathematics 2(2), 1–20 (2011)MathSciNetGoogle Scholar
  25. 25.
    Twitter help center: Following rules and best practices,
  26. 26.
    Twitter blog: Making progress on spam (August 2008),
  27. 27.
    Fortunato, S.: Community detection in graphs. Physics Reports 486(3-5), 75–174 (2010)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Gaito, S., Zignani, M., Rossi, G.P., Sala, A., Wang, X., Zheng, H., Zhao, B.Y.: On the bursty evolution of online social networks. arXiv:1203.6744 [cs.SI] (2012)Google Scholar
  29. 29.
    Ghosh, S., Srivastava, A., Ganguly, N.: Effects of a soft cut-off on node-degree in the Twitter social network. Computer Communications 35(7), 784–795 (2012)CrossRefGoogle Scholar
  30. 30.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proceedings of the National Academy of Sciences of U.S.A (PNAS) 99, 7821 (2002)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Hu, H., Wang, X.-F.: Disassortative mixing in online social networks. Europhysics Letters 86(1), 18003 (2009)CrossRefGoogle Scholar
  32. 32.
    Huberman, B.A., Romero, D.M., Wu, F.: Social networks that matter: Twitter under the microscope. First Monday 14(1) (January 2009)Google Scholar
  33. 33.
    Java, A., Song, X., Finin, T., Tseng, B.: Why we Twitter: understanding microblogging usage and communities. In: Proceedings of Workshop on Web Mining and Social Network Analysis (WebKDD / SNA-KDD), pp. 56–65 (2007)Google Scholar
  34. 34.
    Jin, E.M., Girvan, M., Newman, M.E.J.: Structure of growing social networks. Physical Review E 64, 046132 (2001)Google Scholar
  35. 35.
    Krapivsky, P.L., Rodgers, G.J., Redner, S.: Degree distributions of growing networks. Physical Review Letters 86(23), 5401–5404 (2001)CrossRefGoogle Scholar
  36. 36.
    Kumar, R., Novak, J., Tomkins, A.: Structure and evolution of online social networks. In: Proceedings of ACM International Conference on Knowledge Discovery and Data mining (SIGKDD), pp. 611–617 (2006)Google Scholar
  37. 37.
    Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news media? In. In: Proceedings of ACM International Conference on World Wide Web (WWW), pp. 591–600 (2010)Google Scholar
  38. 38.
    Leskovec, J., Backstrom, L., Kumar, R., Tomkins, A.: Microscopic evolution of social networks. In: Proceedings of ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), pp. 462–470 (2008)Google Scholar
  39. 39.
    Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proceedings of ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), pp. 177–187. ACM (2005)Google Scholar
  40. 40.
    Medo, M., Cimini, G., Gualdi, S.: Temporal effects in the growth of networks. Physical Review Letters 107(23), 238701 (2011)CrossRefGoogle Scholar
  41. 41.
    Mislove, A., Koppula, H.S., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Growth of the Flickr social network. In: Proceedings of Workshop on Online Social Networks (WOSN), pp. 25–30 (2008)Google Scholar
  42. 42.
    Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Measurement and analysis of online social networks. In: Proceedings of ACM SIGCOMM Conference on Internet Measurement (IMC), pp. 29–42 (2007)Google Scholar
  43. 43.
    Mislove, A.E.: Online social networks: measurement, analysis, and applications to distributed information systems. PhD thesis, Rice University (April 2009)Google Scholar
  44. 44.
    Mukherjee, A., Choudhury, M., Ganguly, N.: Understanding how both the partitions of a bipartite network affect its one-mode projection. Physica A: Statistical Mechanics and its Applications 390(20), 3602–3607 (2011)CrossRefGoogle Scholar
  45. 45.
    Nacher, J.C., Akutsu, T.: On the degree distribution of projected networks mapped from bipartite networks. Physica A: Statistical Mechanics and its Applications 390(23-24), 4636–4651 (2011)CrossRefMathSciNetGoogle Scholar
  46. 46.
    Newman, M.E.J.: Clustering and preferential attachment in growing networks. Physical Review E 64, 025102 (2001)Google Scholar
  47. 47.
    Newman, M.E.J.: Assortative mixing in networks. Physical Review Letters 89(20), 208701 (2002)CrossRefGoogle Scholar
  48. 48.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45(2), 167–256 (2003)CrossRefMATHMathSciNetGoogle Scholar
  49. 49.
    Newman, M.E.J.: Random graphs with clustering. Physical Review Letters 103, 058701 (2009)Google Scholar
  50. 50.
    Newman, M.E.J., Park, J.: Why social networks are different from other types of networks. Physical Review E 68(3), 036122 (2003)Google Scholar
  51. 51.
    Newman, M.E.J., Watts, D.J., Strogatz, S.H.: Random graph models of social networks. Proceedings of the National Academy of Sciences of U.S.A (PNAS) 99, 2566–2572 (2002)CrossRefMATHGoogle Scholar
  52. 52.
    Podobnik, B., Horvatic, D., Dickison, M., Stanley, H.E.: Preferential attachment in the interaction between dynamically generated interdependent networks. arXiv:1209.2817 [physics.soc-ph] (2012)Google Scholar
  53. 53.
    Ramasco, J.J., Dorogovtsev, S.N., Pastor-Satorras, R.: Self-organization of collaboration networks. Physical Review E 70(3), 036106 (2004)Google Scholar
  54. 54.
    Romero, D.M., Kleinberg, J.M.: The directed closure process in hybrid social-information networks, with an analysis of link formation on Twitter. In: Proceedings of AAAI International Conference on Weblogs and Social Media (ICWSM) (May 2010)Google Scholar
  55. 55.
    Saramaki, J., Kaski, K.: Scale-free networks generated by random walkers. Physica A: Statistical Mechanics and its Applications 341, 80–86 (2004)CrossRefMathSciNetGoogle Scholar
  56. 56.
    Simon, H.A.: On a class of skew distribution functions. Biometrika 42, 425–440 (1955)MATHMathSciNetGoogle Scholar
  57. 57.
    Singer, P., Wagner, C., Strohmaier, M.: Understanding co-evolution of social and content networks on Twitter. In: Proceedings of Workshop on Making Sense of Microposts (with ACM WWW) (2012)Google Scholar
  58. 58.
    Travers, J., Milgram, S.: An experimental study of the small world problem. Sociometry 32, 425–443 (1969)CrossRefGoogle Scholar
  59. 59.
    Ugander, J., Karrer, B., Backstrom, L., Marlow, C.: The anatomy of the Facebook social graph. arXiv:1111.4503 [cs.SI] (2011)Google Scholar
  60. 60.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Computer Science and TechnologyBengal Engineering and Science University ShibpurHowrahIndia
  2. 2.Department of Computer Science and EngineeringIndian Institute of Technology, KharagpurKharagpurIndia

Personalised recommendations