Diffusion of Information in Social Networks

  • Alireza Louni
  • K. P. Subbalakshmi
Part of the Intelligent Systems Reference Library book series (ISRL, volume 65)


Social networks are a growing phenomenon in today’s Internet media consumption. Social networks are used to not only stay in touch with friends and family, but also to seek and receive information on specific products/services as well as social activism. Understanding and quantifying the information flow within these networks is, therefore, of great interest to individuals, groups and businesses. Several models have been proposed to describe the mechanism of spread of information. We describe these models in detail in this chapter. We then study the importance of “influencers” (nodes that have a higher influence on information spread in a network) and discuss the spread of both truthful and mis-information in a network. Methods to control the spread of mis-information through a social network is also discussed. We then discuss the inverse problem of discovering the source of any given piece of information. Both single and multi-source problems are considered.


Social networks information diffusion influencers diffusion source estimation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kakihara, M.: Understanding real-virtual perspective of human behavior from the active stream perspective. In: Proc., Pacific Asia Conf. on Info. Sys. (PACIS 2010) (2010)Google Scholar
  2. 2.
    McRoberts, B.: Internet plays integral role in decision making: Study. China Daily (2010),
  3. 3.
    Impact of food advertising on childhood obesity. American Psychological Association,
  4. 4.
    Senecal, S., Kalczynski, P.J., Nantel, J.: Consumers’ decision making process and their online shopping behaviors: A Clickstream analysis. Elsevier Jl. of Business Research 58(11), 1599–1608 (2005)CrossRefGoogle Scholar
  5. 5.
    Bullas, J.: 12 key findings on social media’s impact on business and decision makings by CEOs and managers. Social Media Networks, Social Media and the CEO,
  6. 6.
  7. 7.
    Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, New York (2010)CrossRefGoogle Scholar
  8. 8.
    Trusov, M., Bucklin, R.E., Pauwels, K.: Effects of word-of-mouth versus traditional marketing: Findings from an internet social networking site. Journal of Marketing 73(5), 90–102 (2009)CrossRefGoogle Scholar
  9. 9.
    Barry, K.: Ford bets the fiesta on social networking (2009),
  10. 10.
  11. 11.
    Strauss, G., Shell, A., Yu, R., Acohido, B.: Sec, fbi probe fake tweet that rocked stocks (2013),
  12. 12.
    Young, H.P.: Innovation diffusion in heterogeneous populations: Contagion, social influence, and social learning. American Economic Review 99(5), 1899–1924 (2009)CrossRefGoogle Scholar
  13. 13.
    DeGroot, M.H.: Reaching a consensus. Journal of the American Statistical Association 69(345), 118–121 (1974)CrossRefMATHGoogle Scholar
  14. 14.
    Bailey, N.: The Mathematical Theory of Infectious Diseases and its applications. Hafner Press (1975)Google Scholar
  15. 15.
    Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London. Series A 115(772), 700–721 (1927)CrossRefMATHGoogle Scholar
  16. 16.
    Jackson, M.O.: Social and Economic Networks. Princeton University Press (2008)Google Scholar
  17. 17.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Bass, F.M.: A new product growth for model consumer durables. Manage. Sci. 15(5), 215–227 (1969)CrossRefMATHGoogle Scholar
  19. 19.
    Bass, F.M.: The relationship between diffusion rates, experience curves, and demand elasticities for consumer durable technological innovations. Journal of Business 53(3), 551–567 (1980)MathSciNetGoogle Scholar
  20. 20.
    Ryan, B., Gross, N.C.: The diffusion of hybrid seed corn in two iowa communities. Rural Sociology 8, 15–24 (1943)Google Scholar
  21. 21.
    Griliches, Z.: Hybrid corn: An exploration in the economics of technological change. Econometrica 25, 501–522 (1957)CrossRefGoogle Scholar
  22. 22.
    Nekovee, M., Moreno, Y., Bianconi, G., Marsili, M.: Theory of rumour spreading in complex social networks. Physica A: Statistical Mechanics and its Applications 374(1), 457–470 (2007)CrossRefGoogle Scholar
  23. 23.
    Stauffer, D., Aharony, A.: Introduction to Percolation Theory. Taylor and Francis (1992)Google Scholar
  24. 24.
    Cohen, R., Erez, K., ben Avraham, D., Havlin, S.: Resilience of the internet to random breakdowns. Phys. Rev. Lett. 85, 4626–4628 (2000)CrossRefGoogle Scholar
  25. 25.
    Pastor-Satorras, R., Vespignani, A.: Epidemic dynamics and endemic states in complex networks. Phys. Rev. E 63, 066117 (2001)Google Scholar
  26. 26.
    Boguñá, M., Pastor-Satorras, R., Vespignani, A.: Absence of epidemic threshold in scale-free networks with degree correlations. Phys. Rev. Lett. 90, 028701 (2003)Google Scholar
  27. 27.
    Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 3200–3203 (2001)CrossRefGoogle Scholar
  28. 28.
    Wang, Y., Chakrabarti, D., Wang, C., Faloutsos, C.: Epidemic spreading in real networks: An eigenvalue viewpoint. In: Proceedings of the 22nd International Symposium on Reliable Distributed Systems, pp. 25–34 (2003)Google Scholar
  29. 29.
    Centola, D., Macy, M.: Complex contagions and the weakness of long ties. American Journal of Sociology 113, 702–734 (2007)CrossRefGoogle Scholar
  30. 30.
    Granovetter, M.: The strength of weak ties. The American Journal of Sociology 78(6), 1360–1380 (1973)CrossRefGoogle Scholar
  31. 31.
    Miritello, G., Moro, E., Lara, R.: Dynamical strength of social ties in information spreading. Phys. Rev. E 83, 045102 (2011)Google Scholar
  32. 32.
    Jackson, M., Yariv, L.: The diffusion of behavior and equilibrium properties in network games. American Economic Review 97, 92–98 (2007)CrossRefGoogle Scholar
  33. 33.
    Greenberg, K.: Ford fiesta movement shifts into high gear (2010),
  34. 34.
    Yoganarasimhan, H.: Impact of social network structure on content propagation: A study using youtube data. Quantitative Marketing and Economics 10(1), 111–150 (2012)CrossRefGoogle Scholar
  35. 35.
    Bonacich, P.: Power and centrality: A family of measures. American Journal of Sociology 92(5), 1170–1182 (1987)CrossRefGoogle Scholar
  36. 36.
    Sabidussi, G.: The centrality index of a graph. Psychometrika 31(4), 581–603 (1966)CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    Friedkin, N.E.: Theoretical foundations for centrality measures. American Journal of Sociology 96(6), 1478–1504 (1991)CrossRefGoogle Scholar
  38. 38.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. Technical Report 1999-66 (1999)Google Scholar
  39. 39.
    Weng, J., Lim, E.P., Jiang, J., He, Q.: Twitterrank: finding topic-sensitive influential twitterers. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining, WSDM 2010, pp. 261–270 (2010)Google Scholar
  40. 40.
    Kwak, H., Lee, C., Park, H., Moon, S.: What is twitter, a social network or a news media? In: Proceedings of the 19th International Conference on World Wide Web, WWW 2010, pp. 591–600 (2010)Google Scholar
  41. 41.
    Bakshy, E., Hofman, J.M., Mason, W.A., Watts, D.J.: Everyone’s an influencer: quantifying influence on twitter. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, WSDM 2011, pp. 65–74 (2011)Google Scholar
  42. 42.
    Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2003, pp. 137–146 (2003)Google Scholar
  43. 43.
    Kitsak, M., Gallos, L., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H., Makse, H.: Identification of influential spreaders in complex networks. Nature Physics 6(11), 888–893 (2010)CrossRefGoogle Scholar
  44. 44.
    Carmi, S., Havlin, S., Kirkpatrick, S., Shavitt, Y., Shir, E.: From the cover: A model of internet topology using k-shell decomposition. Proceedings of the National Academy of Sciences 104(27), 11,150–11,154 (2007)Google Scholar
  45. 45.
    Serrano, M.A., Boguñá, M.: Clustering in complex networks. ii. percolation properties. Phys. Rev. E 74, 056115 (2006)Google Scholar
  46. 46.
    McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: Homophily in social networks. Annual Review of Sociology 27(1), 415–444 (2001)CrossRefGoogle Scholar
  47. 47.
    Anagnostopoulos, A., Kumar, R., Mahdian, M.: Influence and correlation in social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2008, pp. 7–15 (2008)Google Scholar
  48. 48.
    Aral, S., Muchnik, L., Sundararajan, A.: Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks. Proceedings of the National Academy of Sciences 106(51), 21,544–21,549 (2009)Google Scholar
  49. 49.
    Fraser, W.: Social media and the spread of misinformation,
  50. 50.
    Miller, T.: Medical misinformation spreads quickly on twitter, sometimes reaching millions: study (2010),
  51. 51.
    Tong, H., Prakash, B., Tsourakakis, C., Eliassi-Rad, T., Faloutsos, C., Chau, D.: On the vulnerability of large graphs. In: 2010 IEEE 10th International Conference on Data Mining (ICDM), pp. 1091–1096 (2010)Google Scholar
  52. 52.
    Briesemeister, L., Lincoln, P., Porras, P.: Epidemic profiles and defense of scale-free networks. In: Proceedings of the 2003 ACM Workshop on Rapid Malcode, WORM 2003, pp. 67–75 (2003)Google Scholar
  53. 53.
    Prakash, B.A., Tong, H., Valler, N., Faloutsos, M., Faloutsos, C.: Virus propagation on time-varying networks: theory and immunization algorithms. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part III. LNCS, vol. 6323, pp. 99–114. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  54. 54.
    Budak, C., Agrawal, D., El Abbadi, A.: Limiting the spread of misinformation in social networks. In: Proceedings of the 20th International Conference on World Wide Web, WWW 2011, pp. 665–674 (2011)Google Scholar
  55. 55.
    Pósfai, M., Liu, Y.Y., Slotine, J.J., Barabasi, A.L.: Effect of correlations on network controllability. Scientific Reports 3(1067), 1–7 (2013)Google Scholar
  56. 56.
    Liu, Y.Y., Slotine, J.J., Barabasi, A.L.: Control centrality and hierarchical structure in complex networks. Plos One 7 (2012)Google Scholar
  57. 57.
    Pu, C.L., Pei, W.J., Michaelson, A.: Robustness analysis of network controllability. Physica A: Statistical Mechanics and its Applications 391(18), 4420–4425 (2012)CrossRefGoogle Scholar
  58. 58.
    Karrer, B., Newman, M.E.J.: Competing epidemics on complex networks. Phys. Rev. E 84, 036106 (2011)Google Scholar
  59. 59.
    Myers, S.A., Leskovec, J.: Clash of the contagions: Cooperation and competition in information diffusion. In: ICDM 2012, pp. 539–548 (2012)Google Scholar
  60. 60.
    Romero, D.M., Meeder, B., Kleinberg, J.: Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter. In: Proceedings of the 20th International Conference on World Wide Web, WWW 2011, pp. 695–704 (2011)Google Scholar
  61. 61.
    Hodas, O., Lerman, K.: How limited visibility and divided attention constrain social contagion. In: ASE/IEEE International Conference on Social Computing (2012)Google Scholar
  62. 62.
    Lerman, K., Jain, P., Ghosh, R., Kang, J.H., Kumaraguru, P.: Limited attention and centrality in social networks. In: Proceedings of International Conference on Social Intelligence and Technology (SOCIETY) (2013)Google Scholar
  63. 63.
    Weng, L., Flammini, A., Vespignani, A., Menczer, F.: Competition among memes in a world with limited attention. Scientific Reports 2(335) (2012)Google Scholar
  64. 64.
    Anand, S., Subbalakshmi, K.P., Chandramouli, R.: A quantitative model and analysis of information confusion in social networks. IEEE Transactions on Multimedia 15(1), 207–223 (2013)CrossRefGoogle Scholar
  65. 65.
    Comin, C.H., da Fontoura Costa, L.: Identifying the starting point of a spreading process in complex networks. Phys. Rev. E 84, 056105 (2011)Google Scholar
  66. 66.
    Shah, D., Zaman, T.: Detecting sources of computer viruses in networks: theory and experiment. In: Proceedings of the ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, SIGMETRICS 2010, pp. 203–214 (2010)Google Scholar
  67. 67.
    Shah, D., Zaman, T.: Rumors in a network: Who’s the culprit? IEEE Transactions on Information Theory 57(8), 5163–5181 (2011)CrossRefMathSciNetGoogle Scholar
  68. 68.
    Shah, D., Zaman, T.: Rumor centrality: a universal source detector. In: Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems, SIGMETRICS 2012, pp. 199–210 (2012)Google Scholar
  69. 69.
    Dong, W., Zhang, W., Tan, C.W.: Rooting out the rumor culprit from suspects. arXiv:1301.6312 [cs.SI] (2013)Google Scholar
  70. 70.
    Zhu, K., Ying, L.: Information source detection in the sir model: A sample path based approach. In: Proc. of Inform. Theory and Applications Workshop, ITA 2013 (2013)Google Scholar
  71. 71.
    Pinto, P.C., Thiran, P., Vetterli, M.: Locating the source of diffusion in large-scale networks. Phys. Rev. Lett. 109, 068702 (2012)Google Scholar
  72. 72.
    Luo, W., Tay, W.P.: Identifying multiple infection sources in a network. In: 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), pp. 1483–1489 (2012)Google Scholar
  73. 73.
    Prakash, B., Vreeken, J., Faloutsos, C.: Spotting culprits in epidemics: How many and which ones? In: 2012 IEEE 12th International Conference on Data Mining (ICDM), pp. 11–20 (2012)Google Scholar
  74. 74.
    Grünwald, P.D.: The Minimum Description Length Principle (Adaptive Computation and Machine Learning). The MIT Press (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Stevens Institute of TechnologyHobokenUSA

Personalised recommendations