Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 223))

Abstract

The Drosophila “transient receptor potential” channel is the prototypical TRP channel, belonging to and defining the TRPC subfamily. Together with a second TRPC channel, trp-like (TRPL), TRP mediates the transducer current in the fly’s photoreceptors. TRP and TRPL are also implicated in olfaction and Malpighian tubule function. In photoreceptors, TRP and TRPL are localised in the ~30,000 packed microvilli that form the photosensitive “rhabdomere”—a light-guiding rod, housing rhodopsin and the rest of the phototransduction machinery. TRP (but not TRPL) is assembled into multimolecular signalling complexes by a PDZ-domain scaffolding protein (INAD). TRPL (but not TRP) undergoes light-regulated translocation between cell body and rhabdomere. TRP and TRPL are also found in photoreceptor synapses where they may play a role in synaptic transmission. Like other TRPC channels, TRP and TRPL are activated by a G protein-coupled phospholipase C (PLCβ4) cascade. Although still debated, recent evidence indicates the channels can be activated by a combination of PIP2 depletion and protons released by the PLC reaction. PIP2 depletion may act mechanically as membrane area is reduced by cleavage of PIP2’s bulky inositol headgroup. TRP, which dominates the light-sensitive current, is Ca2+ selective (P Ca:P Cs >50:1), whilst TRPL has a modest Ca2+ permeability (P Ca:P Cs ~5:1). Ca2+ influx via the channels has profound positive and negative feedback roles, required for the rapid response kinetics, with Ca2+ rapidly facilitating TRP (but not TRPL) and also inhibiting both channels. In trp mutants, stimulation by light results in rapid depletion of microvillar PIP2 due to lack of Ca2+ influx required to inhibit PLC. This accounts for the “transient receptor potential” phenotype that gives the family its name and, over a period of days, leads to light-dependent retinal degeneration. Gain-of-function trp mutants with uncontrolled Ca2+ influx also undergo retinal degeneration due to Ca2+ cytotoxicity. In vertebrate retina, mice knockout studies suggest that TRPC6 and TRPC7 mediate a PLCβ4-activated transducer current in intrinsically photosensitive retinal ganglion cells, expressing melanopsin. TRPA1 has been implicated as a “photo-sensing” TRP channel in human melanocytes and light-sensitive neurons in the body wall of Drosophila.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acharya JK, Jalink K, Hardy RW, Hartenstein V, Zuker CS (1997) InsP3 receptor is essential for growth and differentiation but not for vision in Drosophila. Neuron 18:881–887

    CAS  PubMed  Google Scholar 

  • Albert AP, Large WA (2003) Synergism between inositol phosphates and diacylglycerol on native TRPC6-like channels in rabbit portal vein myocytes. J Physiol 552:789–795

    CAS  PubMed Central  PubMed  Google Scholar 

  • Albert AP, Large WA (2006) Signal transduction pathways and gating mechanisms of native TRP-like cation channels in vascular myocytes. J Physiol 570:45–51

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alloway PG, Dolph PJ (1999) A role for the light-dependent phosphorylation of visual arrestin. Proc Natl Acad Sci U S A 96:6072–6077

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arendt D (2003) Evolution of eyes and photoreceptor cell types. Int J Dev Biol 47:563–571

    PubMed  Google Scholar 

  • Astorga G, Hartel S, Sanhueza M, Bacigalupo J (2012) TRP, TRPL and cacophony channels mediate Ca(2+) influx and exocytosis in photoreceptors axons in Drosophila. PLoS One 7:e44182

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bahner M, Frechter S, Da Silva N, Minke B, Paulsen R, Huber A (2002) Light-regulated subcellular translocation of Drosophila TRPL channels induces long-term adaptation and modifies the light-induced current. Neuron 34:83–93

    CAS  PubMed  Google Scholar 

  • Barash S, Suss E, Stavenga DG, Rubinstein CT, Selinger Z, Minke B (1988) Light reduces the excitation efficiency in the nss mutant of the sheep blowfly Lucilia. J Gen Physiol 92:307–330

    CAS  PubMed  Google Scholar 

  • Barritt G, Rychkov G (2005) TRPs as mechanosensitive channels. Nat Cell Biol 7:105–107

    CAS  PubMed  Google Scholar 

  • Beech DJ (2012) Integration of transient receptor potential canonical channels with lipids. Acta physiologica (Oxford, England) 204:227–237

    CAS  Google Scholar 

  • Bellono NW, Oancea E (2013) UV light phototransduction depolarizes human melanocytes. Channels (Austin, Tex 7)

    Google Scholar 

  • Bellono NW, Kammel LG, Zimmerman AL, Oancea E (2013) UV light phototransduction activates transient receptor potential A1 ion channels in human melanocytes. Proc Natl Acad Sci U S A 110:2383–2388

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berson DM (2003) Strange vision: ganglion cells as circadian photoreceptors. Trends Neurosci 26:314–320

    CAS  PubMed  Google Scholar 

  • Bloomquist BT, Shortridge RD, Schneuwly S, Pedrew M, Montell C, Steller H, Rubin G, Pak WL (1988) Isolation of putative phospholipase C gene of Drosophila, norpA and its role in phototransduction. Cell 54:723–733

    CAS  PubMed  Google Scholar 

  • Byk T, BarYaacov M, Doza YN, Minke B, Selinger Z (1993) Regulatory arrestin cycle secures the fidelity and maintenance of the fly photoreceptor cell. Proc Natl Acad Sci U S A 90:1907–1911

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cerny AC, Oberacker T, Pfannstiel J, Weigold S, Will C, Huber A (2013) Mutation of light-dependent phosphorylation sites of the drosophila transient receptor potential-like (TRPL) ion channel affects its subcellular localization and stability. J Biol Chem 288:15600–15613

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng Y, Nash HA (2007) Drosophila TRP channels require a protein with a distinctive motif encoded by the inaF locus. Proc Natl Acad Sci U S A 104:17730–17734

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chevesich J, Kreuz AJ, Montell C (1997) Requirement for the PDZ domain protein, INAD, for localization of the TRP store-operated channel to a signalling complex. Neuron 18:95–105

    CAS  PubMed  Google Scholar 

  • Chorna-Ornan I, Tzarfaty V, Ankri-Eliahoo G, Joel-Almagor T, Meyer NE, Huber A, Payre F, Minke B (2005) Light-regulated interaction of Dmoesin with TRP and TRPL channels is required for maintenance of photoreceptors. J Cell Biol 171:143–152

    CAS  PubMed Central  PubMed  Google Scholar 

  • Christensen AP, Corey DP (2007) TRP channels in mechanosensation: direct or indirect activation? Nat Rev Neurosci 8:510–521

    CAS  PubMed  Google Scholar 

  • Chu B, Liu CH, Sengupta S, Gupta A, Raghu P, Hardie RC (2013a) Common mechanisms regulating dark noise and quantum bump amplification in Drosophila photoreceptors. J Neurophysiol 109:2044–2055

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chu B, Postma M, Hardie RC (2013b) Fractional Ca(2+) currents through TRP and TRPL channels in Drosophila photoreceptors. Biophys J 104:1905–1916

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chyb S, Raghu P, Hardie RC (1999) Polyunsaturated fatty acids activate the Drosophila light-sensitive channels TRP and TRPL. Nature 397:255–259

    CAS  PubMed  Google Scholar 

  • Cockcroft S (2009) Phosphatidic acid regulation of phosphatidylinositol 4-phosphate 5-kinases. Biochim Biophys Acta 1791:905–912

    CAS  PubMed  Google Scholar 

  • Cook B, Minke B (1999) TRP and calcium stores in Drosophila phototransduction. Cell Calcium 25:161–171

    CAS  PubMed  Google Scholar 

  • Cook B, BarYaacov M, BenAmi HC, Goldstein RE, Paroush Z, Selinger Z, Minke B (2000) Phospholipase C and termination of G-protein-mediated signalling in vivo. Nat Cell Biol 1465–7392(2):296–301

    Google Scholar 

  • Cosens DJ, Manning A (1969) Abnormal electroretinogram from a Drosophila mutant. Nature 224:285–287

    CAS  PubMed  Google Scholar 

  • Delgado R, Bacigalupo J (2009) Unitary recordings of TRP and TRPL channels from isolated Drosophila retinal photoreceptor rhabdomeres: activation by light and lipids. J Neurophysiol 101:2372–2379

    CAS  PubMed  Google Scholar 

  • Do MT, Yau KW (2010) Intrinsically photosensitive retinal ganglion cells. Physiol Rev 90:1547–1581

    CAS  PubMed  Google Scholar 

  • Dolph PJ, Ranganathan R, Colley NJ, Hardy RW, Socolich M, Zuker CS (1993) Arrestin function in inactivation of G protein-coupled receptor rhodopsin in vivo. Science 260:1910–1916

    CAS  PubMed  Google Scholar 

  • Du J, Xie J, Yue L (2009) Modulation of TRPM2 by acidic pH and the underlying mechanisms for pH sensitivity. J Gen Physiol 134:471–488

    CAS  PubMed Central  PubMed  Google Scholar 

  • Estacion M, Sinkins WG, Schilling WP (2001) Regulation of Drosophila transient receptor potential-like (TRPL) channels by phospholipase C-dependent mechanisms. J Physiol 530:1–19

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fehon RG, McClatchey AI, Bretscher A (2010) Organizing the cell cortex: the role of ERM proteins. Nat Rev Mol Cell Biol 11:276–287

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferreira PA, Pak WL (1994) Bovine phospholipase C highly homologous to the NorpA protein of Drosophila is expressed specifically in cones. J Biol Chem 269:3129–3131

    CAS  PubMed  Google Scholar 

  • Fu Y, Liao HW, Do MT, Yau KW (2005) Non-image-forming ocular photoreception in vertebrates. Curr Opin Neurobiol 15:415–422

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia-Murillas I, Pettitt T, Macdonald E, Okkenhaug H, Georgiev P, Trivedi D, Hassan B, Wakelam M, Raghu P (2006) lazaro encodes a lipid phosphate phosphohydrolase that regulates phosphatidylinositol turnover during Drosophila phototransduction. Neuron 49:533–546

    CAS  PubMed  Google Scholar 

  • Gillo B, Chorna I, Cohen H, Cook B, Manistersky I, Chorev M, Arnon A, Pollock JA, Selinger Z, Minke B (1996) Coexpression of Drosophila TRP and TRP-like proteins in Xenopus oocytes reconstitutes capacitative Ca2+ entry. Proc Natl Acad Sci U S A 93:14146–14151

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goel M, Garcia R, Estacion M, Schilling WP (2001) Regulation of Drosophila TRPL channels by immunophilin FKBP59. J Biol Chem 276:38762–38773

    CAS  PubMed  Google Scholar 

  • Graham DM, Wong KY, Shapiro P, Frederick C, Pattabiraman K, Berson DM (2008) Melanopsin ganglion cells use a membrane-associated rhabdomeric phototransduction cascade. J Neurophysiol 99:2522–2532

    CAS  PubMed  Google Scholar 

  • Gu Y, Oberwinkler J, Postma M, Hardie RC (2005) Mechanisms of light adaptation in Drosophila photoreceptors. Curr Biol 15:1228–1234

    CAS  PubMed  Google Scholar 

  • Hambrecht J, Zimmer S, Flockerzi V, Cavalie A (2000) Single-channel currents through transient-receptor-potential- like (TRPL) channels. Pflugers Archiv Eur J Physiol 440:418–426

    CAS  Google Scholar 

  • Hankins MW, Peirson SN, Foster RG (2008) Melanopsin: an exciting photopigment. Trends Neurosci 31:27–36

    CAS  PubMed  Google Scholar 

  • Hardie RC (1991) Whole-cell recordings of the light-induced current in Drosophila photoreceptors: evidence for feedback by calcium permeating the light sensitive channels. Proc R Soc Lond B 245:203–210

    Google Scholar 

  • Hardie RC (1995) Photolysis of caged Ca2+ facilitates and inactivates but does not directly excite light-sensitive channels in Drosophila photoreceptors. J Neurosci 15:889–902

    CAS  PubMed  Google Scholar 

  • Hardie RC (1996) INDO-1 measurements of absolute resting and light-induced Ca2+ concentration in Drosophila photoreceptors. J Neurosci 16:2924–2933

    CAS  PubMed  Google Scholar 

  • Hardie RC (2003) Regulation of TRP channels via lipid second messengers. Annu Rev Physiol 65:735–759

    CAS  PubMed  Google Scholar 

  • Hardie RC (2005) Inhibition of phospholipase C activity in Drosophila photoreceptors by 1,2-bis(2-aminophenoxy)ethane N, N, N', N'-tetraacetic acid (BAPTA) and di-bromo BAPTA. Cell Calcium 38:547–556

    CAS  PubMed  Google Scholar 

  • Hardie RC (2007) TRP channels and lipids: from Drosophila to mammalian physiology. J Physiol 578:9–25

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hardie RC (2011) A brief history of trp: commentary and personal perspective. Pflugers Arch 461:493–498

    CAS  PubMed  Google Scholar 

  • Hardie RC (2012) Phototransduction mechanisms in Drosophila microvillar photoreceptors. WIREs Membr Transp Signal 1:2162–2187. doi:10.1002/wmts.20

    Google Scholar 

  • Hardie RC, Franze K (2012) Photomechanical responses in Drosophila photoreceptors. Science 338:260–263

    CAS  PubMed  Google Scholar 

  • Hardie RC, Minke B (1992) The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors. Neuron 8:643–651

    CAS  PubMed  Google Scholar 

  • Hardie RC, Minke B (1994) Spontaneous activation of light-sensitive channels in Drosophila photoreceptors. J Gen Physiol 103:389–407

    CAS  PubMed  Google Scholar 

  • Hardie RC, Mojet MH (1995) Magnesium-dependent block of the light-activated and trp-dependent conductance in Drosophila photoreceptors. J Neurophysiol 74:2590–2599

    CAS  PubMed  Google Scholar 

  • Hardie RC, Postma M (2008) Phototransduction in microvillar photoreceptors of Drosophila and other invertebrates. In: Albright TD, Masland, R (eds) The senses—a comprehensive reference (eds. Basbaum K, Shepherd, Westheimer), vision vol 1. Academic Press, Oxford, pp 77–130

    Google Scholar 

  • Hardie RC, Raghu P (1998) Activation of heterologously expressed Drosophila TRPL channels: Ca2+ is not required and InsP3 is not sufficient. Cell Calcium 24:153–163

    CAS  PubMed  Google Scholar 

  • Hardie RC, Peretz A, Pollock JA, Minke B (1993) Ca2+ limits the development of the light response in Drosophila photoreceptors. Proc Biol Sci 252:223–229

    CAS  PubMed  Google Scholar 

  • Hardie RC, Reuss H, Lansdell SJ, Millar NS (1997) Functional equivalence of native light-sensitive channels in the Drosophila trp 301 mutant and TRPL cation channels expressed in a stably transfected Drosophila cell line. Cell Calcium 21:431–440

    CAS  PubMed  Google Scholar 

  • Hardie RC, Raghu P, Moore S, Juusola M, Baines RA, Sweeney ST (2001) Calcium influx via TRP channels is required to maintain PIP2 levels in Drosophila photoreceptors. Neuron 30:149–159

    CAS  PubMed  Google Scholar 

  • Hardie RC, Martin F, Cochrane GW, Juusola M, Georgiev P, Raghu P (2002) Molecular basis of amplification in Drosophila phototransduction. Roles for G protein, phospholipase C, and diacylglycerol kinase. Neuron 36:689–701

    CAS  PubMed  Google Scholar 

  • Hardie RC, Gu Y, Martin F, Sweeney ST, Raghu P (2004) In vivo light-induced and basal phospholipase C activity in Drosophila photoreceptors measured with genetically targeted phosphatidylinositol 4,5-bisphosphate-sensitive ion channels (Kir2.1). J Biol Chem 279:47773–47782

    CAS  PubMed  Google Scholar 

  • Harteneck C, Obukhov AG, Zobel A, Kalkbrenner F, Schultz G (1995) The Drosophila cation channel Trpl expressed in insect Sf9 cells is stimulated by agonists of G-protein-coupled receptors. FEBS Lett 358:297–300

    CAS  PubMed  Google Scholar 

  • Henderson SR, Reuss H, Hardie RC (2000) Single photon responses in Drosophila photoreceptors and their regulation by Ca2+. J Physiol London 524:179–194

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hicks JL, Liu X, Williams DS (1996) Role of the NinaC proteins in photoreceptor cell structure: ultrastructure of ninaC deletion mutants and binding to actin filaments. Cell Motil Cytoskeleton 35:367–379

    CAS  PubMed  Google Scholar 

  • Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397:259–263

    CAS  PubMed  Google Scholar 

  • Hong YS, Park S, Geng C, Baek K, Bowman JD, Yoon J, Pak WL (2002) Single amino acid change in the fifth transmembrane segment of the TRP Ca2+ channel causes massive degeneration of photoreceptors. J Biol Chem 277:33884–33889

    CAS  PubMed  Google Scholar 

  • Hu Y, Vaca L, Zhu X, Birnbaumer L, Kunze DL, Schilling WP (1994) Appearance of a novel Ca2+ influx pathway in Sf9 insect cells following expression of the transient receptor potential-like (trpl) protein of Drosophila. Biochem Biophys Res Commun 201:1050–1056

    CAS  PubMed  Google Scholar 

  • Huang J, Liu CH, Hughes SA, Postma M, Schwiening CJ, Hardie RC (2010) Activation of TRP channels by protons and phosphoinositide depletion in Drosophila photoreceptors. Curr Biol 20:189–197

    CAS  PubMed  Google Scholar 

  • Huber A (2001) Scaffolding proteins organize multimolecular protein complexes for sensory signal transduction. Eur J Neurosci 14:769–776

    CAS  PubMed  Google Scholar 

  • Huber A, Sander P, Gobert A, Bahner M, Hermann R, Paulsen R (1996a) The transient receptor potential protein (Trp), a putative store-operated Ca2+ channel essential for phosphoinositide-mediated photoreception, forms a signaling complex with NorpA, InaC and InaD. EMBO J 15:7036–7045

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huber A, Sander P, Paulsen R (1996b) Phosphorylation of the InaD gene product, a photoreceptor membrane protein required for recovery of visual excitation. J Biol Chem 271:11710–11717

    CAS  PubMed  Google Scholar 

  • Huber A, Sander P, Bahner M, Paulsen R (1998) The TRP Ca2+ channel assembled in a signaling complex by the PDZ domain protein INAD is phosphorylated through the interaction with protein kinase C (ePKC). FEBS Lett 425:317–322

    CAS  PubMed  Google Scholar 

  • Jenkins GH, Fisette PL, Anderson RA (1994) Type I phosphatidylinositol 4-phosphate 5-kinase isoforms are specifically stimulated by phosphatidic acid. J Biol Chem 269:11547–11554

    CAS  PubMed  Google Scholar 

  • Jors S, Kazanski V, Foik A, Krautwurst D, Harteneck C (2006) Receptor-induced activation of Drosophila TRP{gamma} by polyunsaturated fatty acids. J Biol Chem 281:29693–29702

    PubMed  Google Scholar 

  • Ju M, Shi J, Saleh SN, Albert AP, Large WA (2010) Ins(1,4,5)P3 interacts with PIP2 to regulate activation of TRPC6/C7 channels by diacylglycerol in native vascular myocytes. J Physiol 588:1419–1433

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karagiosis SA, Ready DF (2004) Moesin contributes an essential structural role in Drosophila photoreceptor morphogenesis. Development 131:725–732

    CAS  PubMed  Google Scholar 

  • Katz B, Minke B (2009) Drosophila photoreceptors and signaling mechanisms. Front Cell Neurosci 3:2

    PubMed Central  PubMed  Google Scholar 

  • Katz B, Minke B (2012) Phospholipase C-mediated suppression of dark noise enables single-photon detection in Drosophila photoreceptors. J Neurosci 32:2722–2733

    CAS  PubMed Central  PubMed  Google Scholar 

  • Katz B, Oberacker T, Richter D, Tzadok H, Peters M, Minke B, Huber A (2013) The Drosophila TRP and TRPL are assembled as homomultimeric channels in vivo. J Cell Sci 126(14):3121–3133

    CAS  PubMed  Google Scholar 

  • Kiselev A, Socolich M, Vinos J, Hardy RW, Zuker CS, Ranganathan R (2000) A molecular pathway for light-dependent photoreceptor apoptosis in Drosophila. Neuron 28:139–152

    CAS  PubMed  Google Scholar 

  • Lan L, Bawden MJ, Auld AM, Barritt GJ (1996) Expression of Drosophila Trpl cRNA In Xenopus-laevis oocytes leads to the appearance of a Ca2+ channel activated by Ca2+ and Calmodulin, and by guanosine 5'[gamma-thio]triphosphate. Biochem J 316:793–803

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lan L, Brereton H, Barritt GJ (1998) The role of calmodulin-binding sites in the regulation of the Drosophila TRPL cation channel expressed in Xenopus laevis oocytes by Ca2+, inositol 1,4,5-trisphosphate and GTP-binding proteins. Biochem J 330:1149–1158

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee SJ, Montell C (2001) Regulation of the rhodopsin protein phosphatase, RDGC, through interaction with calmodulin. Neuron 32:1097–1106

    CAS  PubMed  Google Scholar 

  • Lee J, Song M, Hong S (2013) Negative regulation of the novel norpA(P24) suppressor, diehard4, in the endo-lysosomal trafficking underlies photoreceptor cell degeneration. PLoS Genet 9:e1003559

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lemonnier L, Trebak M, Putney JW Jr (2008) Complex regulation of the TRPC3, 6 and 7 channel subfamily by diacylglycerol and phosphatidylinositol-4,5-bisphosphate. Cell Calcium 43:506–514

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leung HT, Geng C, Pak WL (2000) Phenotypes of trpl mutants and interactions between the transient receptor potential (TRP) and TRP-like channels in Drosophila. J Neurosci 20:6797–6803

    CAS  PubMed  Google Scholar 

  • Leung HT, Tseng-Crank J, Kim E, Mahapatra C, Shino S, Zhou Y, An L, Doerge RW, Pak WL (2008) DAG lipase activity is necessary for TRP channel regulation in Drosophila photoreceptors. Neuron 58:884–896

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lev S, Katz B, Minke B (2012) The activity of the TRP-like channel depends on its expression system. Channels (Austin Tex) 6:86–93

    CAS  Google Scholar 

  • Li HS, Montell C (2000) TRP and the PDZ protein, INAD, form the core complex required for retention of the signalplex in Drosophila photoreceptor cells. J Cell Biol 150:1411–1422

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li CJ, Geng CX, Leung HT, Hong YS, Strong LLR, Schneuwly S, Pak WL (1999) INAF, a protein required for transient receptor potential Ca2+ channel function. Proc Natl Acad Sci U S A 96:13474–13479

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liedtke W (2007) TRPV channels’ role in osmotransduction and mechanotransduction. Handb Exp Pharmacol 179:473–487

    CAS  PubMed  Google Scholar 

  • Lin SY, Corey DP (2005) TRP channels in mechanosensation. Curr Opin Neurobiol 15:350–357

    CAS  PubMed  Google Scholar 

  • Lin JY, Fisher DE (2007) Melanocyte biology and skin pigmentation. Nature 445:843–850

    CAS  PubMed  Google Scholar 

  • Liu M, Parker LL, Wadzinski BE, Shieh BH (2000) Reversible phosphorylation of the signal transduction complex in Drosophila photoreceptors. J Biol Chem 275:12194–12199

    CAS  PubMed  Google Scholar 

  • Liu CH, Wang T, Postma M, Obukhov AG, Montell C, Hardie RC (2007) In vivo identification and manipulation of the Ca2+ selectivity filter in the Drosophila transient receptor potential channel. J Neurosci 27:604–615

    CAS  PubMed  Google Scholar 

  • Liu CH, Satoh AK, Postma M, Huang J, Ready DF, Hardie RC (2008) Ca2+-dependent metarhodopsin inactivation mediated by Calmodulin and NINAC myosin III. Neuron 59:778–789

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu J, Ward A, Gao J, Dong Y, Nishio N, Inada H, Kang L, Yu Y, Ma D, Xu T, Mori I, Xie Z, Xu XZ (2010) C. elegans phototransduction requires a G protein-dependent cGMP pathway and a taste receptor homolog. Nat Neurosci 13:715–722

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu W, Wen W, Wei Z, Yu J, Ye F, Liu CH, Hardie RC, Zhang M (2011) The INAD scaffold is a dynamic, redox-regulated modulator of signaling in the Drosophila eye. Cell 145:1088–1101

    CAS  PubMed  Google Scholar 

  • Lucas P, Ukhanov K, Leinders-Zufall T, Zufall F (2003) A diacylglycerol-gated cation channel in vomeronasal neuron dendrites is impaired in TRPC2 mutant mice: mechanism of pheromone transduction. Neuron 40:551–561

    CAS  PubMed  Google Scholar 

  • Macpherson MR, Pollock VP, Kean L, Southall TD, Giannakou ME, Broderick KE, Dow JA, Hardie RC, Davies SA (2005) Transient receptor potential-like (TRPL) channels are essential for calcium signalling and fluid transport in a Drosophila epithelium. Genetics 169:1541–1552

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, Hamill OP (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7:179–185

    CAS  PubMed  Google Scholar 

  • Masai I, Suzuki E, Yoon CS, Kohyama A, Hotta Y (1997) Immunolocalization of Drosophila eye-specific diacylgylcerol kinase, rdgA, which is essential for the maintenance of the photoreceptor. J Neurobiol 32:695–706

    CAS  PubMed  Google Scholar 

  • Matsumoto H, Kurien BT, Takagi Y, Kahn ES, Kinumi T, Komori N, Yamada T, Hayashi F, Isono K, Pak WL et al (1994) Phosrestin I undergoes the earliest light-induced phosphorylation by a calcium/calmodulin-dependent protein kinase in Drosophila photoreceptors. Neuron 12:997–1010

    CAS  PubMed  Google Scholar 

  • Mecklenburg KL, Takemori N, Komori N, Chu B, Hardie RC, Matsumoto H, O'Tousa JE (2010) Retinophilin is a light-regulated phosphoprotein required to suppress photoreceptor dark noise in Drosophila. J Neurosci 30:1238–1249

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mederos y Schnitzler M, Storch U, Meibers S, Nurwakagari P, Breit A, Essin K, Gollasch M, Gudermann T (2008) Gq-coupled receptors as mechanosensors mediating myogenic vasoconstriction. EMBO J 27:3092–3103

    CAS  PubMed  Google Scholar 

  • Minke B (1977) Drosophila mutant with a transducer defect. Biophys Struct Mech 3:59–64

    CAS  PubMed  Google Scholar 

  • Minke B (1982) Light-induced reduction in excitation efficiency in the trp mutant of Drosophila. J Gen Physiol 79:361–385

    CAS  PubMed  Google Scholar 

  • Minke B (2010) The history of the Drosophila TRP channel: the birth of a new channel superfamily. J Neurogenet 24:216–233

    CAS  PubMed Central  PubMed  Google Scholar 

  • Minke B, Selinger Z (1991) Inositol lipid pathway in fly photoreceptors: excitation, calcium mobilization and retinal degeneration. Prog Retinal Res 11:99–124

    CAS  Google Scholar 

  • Minke B, Wu C, Pak WL (1975) Induction of photoreceptor voltage noise in the dark in Drosophila mutant. Nature 258:84–87

    CAS  PubMed  Google Scholar 

  • Mishra P, Socolich M, Wall MA, Graves J, Wang Z, Ranganathan R (2007) Dynamic Scaffolding in a G Protein-Coupled Signaling System. Cell 131:80–92

    CAS  PubMed  Google Scholar 

  • Montell C (1999) Visual transduction in Drosophila. Annu Rev Cell Dev Biol 15:231–268

    CAS  PubMed  Google Scholar 

  • Montell C (2011) The history of TRP channels, a commentary and reflection. Pflugers Arch 461:499–506

    CAS  PubMed  Google Scholar 

  • Montell C, Rubin GM (1989) Molecular characterization of Drosophila trp locus, a putative integral membrane protein required for phototransduction. Neuron 2:1313–1323

    CAS  PubMed  Google Scholar 

  • Niemeyer BA, Suzuki E, Scott K, Jalink K, Zuker CS (1996) The Drosophila light-activated conductance is composed of the two channels TRP and TRPL. Cell 85:651–659

    CAS  PubMed  Google Scholar 

  • Oberwinkler J, Stavenga DG (2000) Calcium transients in the rhabdomeres of dark- and light-adapted fly photoreceptor cells. J Neurosci 20:1701–1709

    CAS  PubMed  Google Scholar 

  • Obukhov AG, Schultz G, Luckhoff A (1998) Regulation of heterologously expressed transient receptor potential-like channels by calcium ions. Neuroscience 85:487–495

    CAS  PubMed  Google Scholar 

  • Okada T, Inoue R, Yamazaki K, Maeda A, Kurosaki T, Yamakuni T, Tanaka I, Shimizu S, Ikenaka K, Imoto K, Mori Y (1999) Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7 - Ca2 + - permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. J Biol Chem 274:27359–27370

    CAS  PubMed  Google Scholar 

  • Otsuguro K, Tang J, Tang Y, Xiao R, Freichel M, Tsvilovskyy V, Ito S, Flockerzi V, Zhu MX, Zholos AV (2008) Isoform-specific inhibition of TRPC4 channel by phosphatidylinositol 4,5-bisphosphate. J Biol Chem 283:10026–10036

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pak WL (1995) Drosophila in vision research: The Friedenwald lecture. Invest Ophthalmol Vis Sci 36:2340–2357

    CAS  PubMed  Google Scholar 

  • Panda S, Nayak SK, Campo B, Walker JR, Hogenesch JB, Jegla T (2005) Illumination of the melanopsin signaling pathway. Science 307:600–604

    CAS  PubMed  Google Scholar 

  • Parnas M, Katz B, Minke B (2007) Open channel block by Ca2+ underlies the voltage dependence of Drosophila TRPL channel. J Gen Physiol 129:17–28

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parnas M, Katz B, Lev S, Tzarfaty V, Dadon D, Gordon-Shaag A, Metzner H, Yaka R, Minke B (2009a) Membrane lipid modulations remove divalent open channel block from TRP-Like and NMDA channels. J Neurosci 29:2371–2383

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parnas M, Peters M, Dadon D, Lev S, Vertkin I, Slutsky I, Minke B (2009b) Carvacrol is a novel inhibitor of Drosophila TRPL and mammalian TRPM7 channels. Cell Calcium 45:300–309

    CAS  PubMed Central  PubMed  Google Scholar 

  • Patel A, Sharif-Naeini R, Folgering JR, Bichet D, Duprat F, Honore E (2010) Canonical TRP channels and mechanotransduction: from physiology to disease states. Pflugers Arch 460:571–581

    CAS  PubMed  Google Scholar 

  • Paulsen R, Bahner M, Huber A (2000) The PDZ assembled “transducisome” of microvillar photoreceptors: the TRP/TRPL problem. Pflugers Arch 439:R181–R183

    CAS  PubMed  Google Scholar 

  • Peng L, Popescu DC, Wang N, Shieh BH (2008) Anchoring TRP to the INAD macromolecular complex requires the last 14 residues in its carboxyl terminus. J Neurochem 104:1526–1535

    CAS  PubMed Central  PubMed  Google Scholar 

  • Phillips AM, Bull A, Kelly LE (1992) Identification of a Drosophila gene encoding a calmodulin-binding protein with homology to the trp phototransduction gene. Neuron 8:631–642

    CAS  PubMed  Google Scholar 

  • Popescu DC, Ham A-JL, Shieh B-H (2006) Scaffolding protein INAD regulates deactivation of vision by promoting phosphorylation of transient receptor potential by rye protein kinase C in Drosophila. J Neurosci 26:8570–8577

    CAS  PubMed Central  PubMed  Google Scholar 

  • Postma M, Oberwinkler J, Stavenga DG (1999) Does Ca2+ reach millimolar concentrations after single photon absorption in Drosophila photoreceptor microvilli? Biophys J 77:1811–1823

    CAS  PubMed Central  PubMed  Google Scholar 

  • Poteser M, Schleifer H, Lichtenegger M, Schernthaner M, Stockner T, Kappe CO, Glasnov TN, Romanin C, Groschner K (2011) PKC-dependent coupling of calcium permeation through transient receptor potential canonical 3 (TRPC3) to calcineurin signaling in HL-1 myocytes. Proc Natl Acad Sci U S A 108:10556–10561

    CAS  PubMed Central  PubMed  Google Scholar 

  • Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD (2000) A novel human opsin in the inner retina. J Neurosci 20:600–605

    CAS  PubMed  Google Scholar 

  • Quick K, Zhao J, Eijkelkamp N, Linley JE, Rugiero F, Cox JJ, Raouf R, Gringhuis M, Sexton JE, Abramowitz J, Taylor R, Forge A, Ashmore J, Kirkwood N, Kros CJ, Richardson GP, Freichel M, Flockerzi V, Birnbaumer L, Wood JN (2012) TRPC3 and TRPC6 are essential for normal mechanotransduction in subsets of sensory neurons and cochlear hair cells. Open Biol 2:120068

    PubMed Central  PubMed  Google Scholar 

  • Raghu P (2006) Regulation of Drosophila TRPC channels by protein and lipid interactions. Semin Cell Dev Biol 17:646–653

    CAS  PubMed  Google Scholar 

  • Raghu P, Hardie RC (2009) Regulation of Drosophila TRPC channels by lipid messengers. Cell Calcium 45:566–573

    CAS  PubMed  Google Scholar 

  • Raghu P, Colley NJ, Webel R, James T, Hasan G, Danin M, Selinger Z, Hardie RC (2000a) Normal phototransduction in Drosophila photoreceptors lacking an InsP3 receptor gene. Mol Cell Neurosci 15:429–445

    CAS  PubMed  Google Scholar 

  • Raghu P, Usher K, Jonas S, Chyb S, Polyanovsky A, Hardie RC (2000b) Constitutive activity of the light-sensitive channels TRP and TRPL in the Drosophila diacylglycerol kinase mutant, rdgA. Neuron 26:169–179

    CAS  PubMed  Google Scholar 

  • Ranganathan R, Bacskai BJ, Tsien RY, Zuker CS (1994) Cytosolic calcium transients: spatial localization and role in Drosophila photoreceptor cell function. Neuron 13:837–848

    CAS  PubMed  Google Scholar 

  • Reuss H, Mojet MH, Chyb S, Hardie RC (1997) In vivo analysis of the Drosophila light-sensitive channels, TRP and TRPL. Neuron 19:1249–1259

    CAS  PubMed  Google Scholar 

  • Rosenbaum EE, Brehm KS, Vasiljevic E, Liu CH, Hardie RC, Colley NJ (2011) XPORT-dependent transport of TRP and rhodopsin. Neuron 72:602–615

    CAS  PubMed Central  PubMed  Google Scholar 

  • Running Deer JL, Hurley JB, Yarfitz SL (1995) G protein control of Drosophila photoreceptor phospholipase C. J Biol Chem 270:12623–12628

    CAS  PubMed  Google Scholar 

  • Ryu S, Liu B, Yao J, Fu Q, Qin F (2007) Uncoupling proton activation of vanilloid receptor TRPV1. J Neurosci 27:12797–12807

    CAS  PubMed  Google Scholar 

  • Satoh AK, O’Tousa JE, Ozaki K, Ready DF (2005) Rab11 mediates post-Golgi trafficking of rhodopsin to the photosensitive apical membrane of Drosophila photoreceptors. Development 132:1487–1497

    CAS  PubMed  Google Scholar 

  • Scott K, Zuker CS (1998) Assembly of the Drosophila phototransduction cascade into a signalling complex shapes elementary responses. Nature 395:805–808

    CAS  PubMed  Google Scholar 

  • Scott K, Becker A, Sun Y, Hardy R, Zuker C (1995) Gq a protein function in vivo: genetic dissection of its role in photoreceptor cell physiology. Neuron 15:919–927

    CAS  PubMed  Google Scholar 

  • Scott K, Sun YM, Beckingham K, Zuker CS (1997) Calmodulin regulation of Drosophila light-activated channels and receptor function mediates termination of the light response in vivo. Cell 91:375–383

    CAS  PubMed  Google Scholar 

  • Semtner M, Schaefer M, Pinkenburg O, Plant TD (2007) Potentiation of TRPC5 by Protons. J Biol Chem 282:33868–33878

    CAS  PubMed  Google Scholar 

  • Sengupta S, Barber TR, Xia H, Ready DF, Hardie RC (2013) Depletion of PtdIns(4,5)P2 underlies retinal degeneration in Drosophila trp mutants. J Cell Sci 126:1247–1259

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharif-Naeini R, Dedman A, Folgering JH, Duprat F, Patel A, Nilius B, Honore E (2008) TRP channels and mechanosensory transduction: insights into the arterial myogenic response. Pflugers Arch 456:529–540

    CAS  PubMed  Google Scholar 

  • Shieh BH, Niemeyer B (1995) A novel protein encoded by the InaD gene regulates recovery of visual transduction in Drosophila. Neuron 14:201–210

    CAS  PubMed  Google Scholar 

  • Shieh BH, Zhu MY (1996) Regulation of the TRP Ca2+ channel by INAD in Drosophila photoreceptors. Neuron 16:991–998

    CAS  PubMed  Google Scholar 

  • Spassova MA, Hewavitharana T, Xu W, Soboloff J, Gill DL (2006) A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci U S A 103:16586–16591

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steele FR, Washburn T, Rieger R, O’Tousa JE (1992) Drosophila retinal degeneration C (rdgC) encodes a novel serine/threonine protein phosphatase. Cell 69:669–676

    CAS  PubMed  Google Scholar 

  • Stortkuhl KF, Hovemann BT, Carlson JR (1999) Olfactory adaptation depends on the trp Ca2+ channel in Drosophila. J Neurosci 19:4839–4846

    CAS  PubMed  Google Scholar 

  • Su Z, Zhou X, Haynes WJ, Loukin SH, Anishkin A, Saimi Y, Kung C (2007) Yeast gain-of-function mutations reveal structure-function relationships conserved among different subfamilies of transient receptor potential channels. Proc Natl Acad Sci U S A 104:19607–19612

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suchyna TM, Johnson JH, Hamer K, Leykam JF, Gage DA, Clemo HF, Baumgarten CM, Sachs F (2000) Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. J Gen Physiol 115:583–598

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trebak M, Lemonnier L, Dehaven WI, Wedel BJ, Bird GS, Putney JW Jr (2009) Complex functions of phosphatidylinositol 4,5-bisphosphate in regulation of TRPC5 cation channels. Pflugers Arch 457:757–769

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trost C, Marquart A, Zimmer S, Philipp S, Cavalie A, Flockerzi V (1999) Ca2 + -dependent interaction of the trpl cation channel and calmodulin. FEBS Lett 451:257–263

    CAS  PubMed  Google Scholar 

  • Tsunoda S, Sierralta J, Sun YM, Bodner R, Suzuki E, Becker A, Socolich M, Zuker CS (1997) A multivalent PDZ-domain protein assembles signalling complexes in a G-protein-coupled cascade. Nature 388:243–249

    CAS  PubMed  Google Scholar 

  • Tsunoda S, Sun Y, Suzuki E, Zuker C (2001) Independent anchoring and assembly mechanisms of INAD signaling complexes in Drosophila photoreceptors. J Neurosci 21:150–158

    CAS  PubMed  Google Scholar 

  • Vaca L, Sinkins WG, Hu Y, Kunze DL, Schilling WP (1994) Activation of recombinant trp by thapsigargin in Sf9 insect cells. Am J Physiol Cell Physiol 267:C1501–C1505

    CAS  Google Scholar 

  • Vinos J, Jalink K, Hardy RW, Britt SG, Zuker CS (1997) A G protein-coupled receptor phosphatase required for rhodopsin function. Science 277:687–690

    CAS  PubMed  Google Scholar 

  • Voolstra O, Beck K, Oberegelsbacher C, Pfannstiel J, Huber A (2010) Light-dependent phosphorylation of the Drosophila transient receptor potential (TRP) ion channel. J Biol Chem 285:14275–14284

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang T, Jiao Y, Montell C (2005a) Dissecting independent channel and scaffolding roles of the Drosophila transient receptor potential channel. J Cell Biol 171:685–694

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang T, Xu H, Oberwinkler J, Gu Y, Hardie RC, Montell C (2005b) Light activation, adaptation, and cell survival Functions of the Na+/Ca2+ exchanger CalX. Neuron 45:367–378

    CAS  PubMed  Google Scholar 

  • Wang YY, Chang RB, Liman ER (2010) TRPA1 Is a Component of the Nociceptive Response to CO2. J Neurosci 30:12958–12963

    CAS  PubMed Central  PubMed  Google Scholar 

  • Warr CG, Kelly LE (1996) Identification and characterization of two distinct calmodulin-binding sites in the Trpl ion-channel protein of Drosophila melanogaster. Biochem J 314:497–503

    CAS  PubMed Central  PubMed  Google Scholar 

  • Warren EJ, Allen CN, Brown RL, Robinson DW (2006) The light-activated signaling pathway in SCN-projecting rat retinal ganglion cells. Eur J Neurosci 23:2477–2487

    PubMed Central  PubMed  Google Scholar 

  • Wes PD, Chevesich J, Jeromin A, Rosenberg C, Stetten G, Montell C (1995) TRPC1, a human homolog of a Drosophila store-operated channel. Proc Natl Acad Sci U S A 92:9652–9656

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wes PD, Xu XZ, Li HS, Chien F, Doberstein SK, Montell C (1999) Termination of phototransduction requires binding of the NINAC myosin III and the PDZ protein INAD. Nat Neurosci 2:447–453

    CAS  PubMed  Google Scholar 

  • Wicks NL, Chan JW, Najera JA, Ciriello JM, Oancea E (2011) UVA phototransduction drives early melanin synthesis in human melanocytes. Curr Biol 21:1906–1911

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xiang Y, Yuan Q, Vogt N, Looger LL, Jan LY, Jan YN (2010) Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall. Nature 468:921–926

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu XZS, Li HS, Guggino WB, Montell C (1997) Coassembly of TRP and TRPL produces a distinct store-operated conductance. Cell 89:1155–1164

    CAS  PubMed  Google Scholar 

  • Xu XZS, Choudhury A, Li XL, Montell C (1998) Coordination of an array of signaling proteins through homo- and heteromeric interactions between PDZ domains and target proteins. J Cell Biol 142:545–555

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu XZS, Chien F, Butler A, Salkoff L, Montell C (2000) TRP gamma, a Drosophila TRP-related subunit, forms a regulated cation channel with TRPL. Neuron 26:647–657

    CAS  PubMed  Google Scholar 

  • Yau KW, Hardie RC (2009) Phototransduction motifs and variations. Cell 139:246–264

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yin J, Kuebler WM (2010) Mechanotransduction by TRP channels: general concepts and specific role in the vasculature. Cell Biochem Biophys 56:1–18

    CAS  PubMed  Google Scholar 

  • Yoon J, Ben-Ami HC, Hong YS, Park S, Strong LL, Bowman J, Geng C, Baek K, Minke B, Pak WL (2000) Novel mechanism of massive photoreceptor degeneration caused by mutations in the trp gene of Drosophila. J Neurosci 20:649–659

    CAS  PubMed  Google Scholar 

  • Zhu X, Chu PB, Peyton M, Birnbaumer L (1995) Molecular cloning of a widely expressed human homologue for the Drosophila trp gene. FEBS Lett 373:193–198

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger C. Hardie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hardie, R.C. (2014). Photosensitive TRPs. In: Nilius, B., Flockerzi, V. (eds) Mammalian Transient Receptor Potential (TRP) Cation Channels. Handbook of Experimental Pharmacology, vol 223. Springer, Cham. https://doi.org/10.1007/978-3-319-05161-1_4

Download citation

Publish with us

Policies and ethics