Skip to main content

Square Root Voting System, Optimal Threshold and π

  • Chapter
  • First Online:
Voting Power and Procedures

Part of the book series: Studies in Choice and Welfare ((WELFARE))

Abstract

The problem of designing an optimal weighted voting system for the two-tier voting, applicable in the case of the Council of Ministers of the European Union (EU), is investigated. Various arguments in favor of the square root voting system, where the voting weights of member states are proportional to the square root of their population are discussed and a link between this solution and the random walk in the one-dimensional lattice is established. It is known that the voting power of every member state is approximately equal to its voting weight, if the threshold q for the qualified majority in the voting body is optimally chosen. We analyze the square root voting system for a generic “union” of M states and derive in this case an explicit approximate formula for the level of the optimal threshold: \(q \simeq 1/2 + 1/\sqrt{\pi M}\). The prefactor \(1/\sqrt{\pi }\) appears here as a result of averaging over the ensemble of “unions” with random populations.

This paper was presented to the Voting Power in Practice Symposium at the London School of Economics, 20–22 March 2011, sponsored by the Leverhulme Trust.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ade, F. (2006). Decision making in Europe: Were Spain and Poland right to stop the constitution in December 2003? Preprint. http://congress.utu.fi/epcs2006/docs/D3_ade.pdf

  • Algaba, E., Bilbao, J. R., & Fernandez, J. R. (2007). The distribution of power in the European Constitution. European Journal of Operational Research, 176, 1752–1766.

    Article  Google Scholar 

  • Andjiga, N.-G., Chantreuil, F., & Leppeley, D. (2003). La mesure du pouvoir de vote. Mathematical Social Sciences, 163, 111–145.

    Google Scholar 

  • Baldwin, R. E., & Widgrén, M. (2004). Winners and losers under various dual majority rules for the EU Council of Ministers (CEPR Discussion Paper No. 4450, Centre for European Policy Studies, Brussels 2004). http://www.cepr.org/pubs/dps/DP4450.asp

  • Banzhaf, J. F. (1965). Weighted voting does not work: A mathematical analysis. Rutgers Law Review, 19, 317–343.

    Google Scholar 

  • Bârsan-Pipu, N., & Tache, I. (2009). An analysis of EU voting procedures in the enlargement context. International Advances in Economic Research, 15, 393–408.

    Article  Google Scholar 

  • Beisbart, C., & Bovens, L., & Hartmann, S. (2005). A utilitarian assessment of alternative decision rules in the Council of Ministers. European Union Politics, 6, 395–419.

    Article  Google Scholar 

  • Bengtsson, I., & Życzkowski, K. (2006). Geometry of quantum states. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Chang, P.-L., Chua, V. C. H., & Machover, M. (2006). LS Penrose’s limit theorem: Tests by simulation. Mathematical Social Sciences, 51, 90–106.

    Article  Google Scholar 

  • Feix, M. R., Lepelley, D., Merlin, V., & Rouet, J. L. (2007). On the voting power of an alliance and the subsequent power of its members. Social Choice and Welfare, 28, 181–207.

    Article  Google Scholar 

  • Felsenthal, D. S., & Machover M. (1997). The weighted voting rule in the EUs Council of Ministers, 1958–1995: Intentions and outcomes. Electoral Studies, 16, 33–47.

    Article  Google Scholar 

  • Felsenthal, D. S., & Machover, M. (1998). Measurement of voting power: Theory and practice, problems and paradoxes. Cheltenham: Edward Elgar.

    Book  Google Scholar 

  • Felsenthal, D. S., & Machover, M. (1999). Minimizing the mean majority deficit: The second square-root rule. Mathematical Social Science, 37, 25–37.

    Article  Google Scholar 

  • Felsenthal, D. S., & Machover, M. (2001). Treaty of Nice and qualified majority voting. Social Choice and Welfare, 18, 431–464.

    Article  Google Scholar 

  • Gelman, A., Katz, J. M., & Tuerlinckx, F. (2002). The mathematics and statitics of voting power. Statistical Science, 17, 420–435.

    Article  Google Scholar 

  • Gelman, A., Katz, J. M., & Bafumi, J. (2004). Standard voting power indexes do not work: An empirical analysis. British Journal of Political Science, 34, 657–674.

    Article  Google Scholar 

  • Hosli, M. O. (2008). Council decision rules and European Union constitutional design. AUCO Czech Economic Review, 2, 76–96.

    Google Scholar 

  • Jones, K. R. W. (1991). Riemann-Liouville fractional integration and reduced distributions on hyperspheres. Journal of Physics, A 24, 1237–1244.

    Google Scholar 

  • Kirsch, W. (2007). On Penrose’s square-root law and beyond. Homo Oeconomicus, 24, 357–380.

    Google Scholar 

  • Kirsch, W. (2010). The distribution of power in the Council of Ministers of the European Union. In M. Cichocki, & K. Życzkowski (Eds.), Institutional design and voting power in the European Union (pp. 93–107). Farnham: Ashgate Publishing Group.

    Google Scholar 

  • Kirsch, W., Słomczyński, W., & Życzkowski, K. (2007). Getting the votes right. European Voice, 3–9, 12.

    Google Scholar 

  • Kurth, M. (2007). Square root voting in the Council of the European Union: Rounding effects and the jagiellonian compromise. Preprint [math.GM 0712.2699].

    Google Scholar 

  • Laruelle, A., & Valenciano, F. (2002). Inequality among EU citizens in the EU’s Council decision procedure. European Journal of Political Economy, 18, 475–498.

    Article  Google Scholar 

  • Laruelle, A., & Valenciano, F. (2008). Voting and collective decision-making. Bargaining and power. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Laruelle, A., & Widgrén, M. (1998). Is the allocation of voting power among the EU states fair? Public Choice, 94, 317–339.

    Article  Google Scholar 

  • Leech, D. (2002). Designing the voting system for the Council of the EU. Public Choice, 113, 437–464.

    Article  Google Scholar 

  • Leech, D., & Aziz, H. (2010). The double majority voting rule of the EU reform treaty as a democratic ideal for an enlarging Union: An appraisal using voting power analysis. In M. Cichocki, & K. Życzkowski (Eds.), Institutional design and voting Power in the European Union (pp. 59–73). Farnham: Ashgate Publishing Group.

    Google Scholar 

  • Leech, D., & Machover, M. (2003). Qualified majority voting: The effect of the quota. In M. Holler, et al. (Eds.), European Governance, Jahrbuch für Neue Politische Ökonomie (pp. 127–143). Tübingen: Mohr Siebeck.

    Google Scholar 

  • Lindner, I., & Machover, M. (2004). LS Penrose’s limit theorem: Proof of some special cases. Mathematical Social Sciences, 47, 37–49.

    Article  Google Scholar 

  • Machover, M. (2010). Penrose’s square root rule and the EU Council of the Ministers: Significance of the quota. In M. Cichocki, & K. Życzkowski (Eds.), Institutional design and voting power in the European Union (pp. 35–42). Farnham: Ashgate Publishing Group.

    Google Scholar 

  • Moberg, A. (2010). Is the double majority really double? The voting rules in the Lisbon Treaty. In M. Cichocki, & K. Życzkowski (Eds.), Institutional design and voting power in the European Union (pp. 19–34). Farnham: Ashgate Publishing Group.

    Google Scholar 

  • Morriss, P. (1987). Power: A philosophical analysis. Manchester: Manchester University Press; 2nd ed. 2002.

    Google Scholar 

  • Owen, G. (1975). Multilinear extensions and the Banzhaf value. Naval Research Logistics Quaterly, 22, 741–750.

    Article  Google Scholar 

  • Pajala, A., & Widgrén, M. (2004). A priori versus empirical voting power in the EU Council of Ministers. European Union Politics, 5, 73–97.

    Article  Google Scholar 

  • Penrose, L. S. (1946). The elementary statistics of majority voting. Journal of the Royal Statistical Society, 109, 53–57.

    Article  Google Scholar 

  • Penrose, L. S. (1952). On the objective study of crowd behaviour. London: H.K. Lewis & Co.

    Google Scholar 

  • Pöppe, Ch. (2007, August). Die Quadratwurzel, das Irrationale und der Tod. Spektrum der Wissenschaft, 102–105.

    Google Scholar 

  • Pukelsheim, F. (2007, Juni 20). Der Jagiellonische Kompromiss. Neue Züricher Zeitung.

    Google Scholar 

  • Pukelsheim, F. (2010). Putting citizens first: Representation and power in the European Union. In M. Cichocki, & K. Życzkowski (Eds.), Institutional design and voting power in the European Union (pp. 235–253). Farnham: Ashgate Publishing Group.

    Google Scholar 

  • Ramaley, J. F. (1969). Buffon’s noodle problem. American Mathematical Monthly, 76, 916–918.

    Article  Google Scholar 

  • Shapley, L. S., & Shubik, M. (1954). A method for evaluating the distribution of power in a committee system. American Science Review, 48, 787–792.

    Article  Google Scholar 

  • Słomczyński, W., & Życzkowski, K. (2004, May). Voting in the European Union: The square root system of Penrose and a critical point. Preprint cond-mat.0405396.

    Google Scholar 

  • Słomczyński, W., & Życzkowski, K. (2006). Penrose voting system and optimal quota. Acta Physica Polonica, B 37, 3133–3143.

    Google Scholar 

  • Słomczyński, W., & Życzkowski, K. (2007). From a toy model to the double square root voting system. Homo Oeconomicus, 24, 381–399.

    Google Scholar 

  • Słomczyński, W., & Życzkowski, K. (2010). Jagiellonian compromise - an alternative voting system for the Council of the European Union. In M. Cichocki, & K. Życzkowski (Eds.), Institutional design and voting power in the European Union (pp. 43–57). Farnham: Ashgate Publishing Group.

    Google Scholar 

  • Życzkowski, K., Słomczyński, W., & Zastawniak, T. (2006). Physics for fairer voting. Physics World, 19, 35–37.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karol Życzkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Życzkowski, K., Słomczyński, W. (2014). Square Root Voting System, Optimal Threshold and π. In: Fara, R., Leech, D., Salles, M. (eds) Voting Power and Procedures. Studies in Choice and Welfare. Springer, Cham. https://doi.org/10.1007/978-3-319-05158-1_8

Download citation

Publish with us

Policies and ethics