Skip to main content

Small Parameter Methods: Basic Ideas

  • Chapter
  • First Online:
Methods of Small Parameter in Mathematical Biology

Abstract

We introduce basic ideas of asymptotic analysis and present a number of models which describe complex processes, the components of which occur at significantly different rates. Such models in a natural way contain a small parameter which is the ratio of the slow and the fast rates, thus lending themselves to asymptotic analysis. We discuss, among others, classical models of fluid dynamics and kinetic theory, population problems with fast migrations, epidemiological problems concerning diseases with quick turnover, models of enzyme kinetics and Brownian motion with fast direction changes. We also discuss initial and boundary layer phenomena using a simplified fluid dynamics equation as an example. In the conclusion of the chapter we discuss a model of enzyme kinetics and show in detail the application of the Hilbert expansion method to derive (formally) the Michaelis–Menten model; a rigorous derivation is referred to Chap. 3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, J.D., Jr.: Ludwig Prandtl’s Boundary Layer. Phys. Today 48, 42–48 (2005)

    Google Scholar 

  2. Arlotti, L., Deutsch, A., Lachowicz, M.: On a discrete Boltzmann-type model of swarming. Math. Comput. Model. 41, 10, 1193–1201 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Auger, P., Bravo de la Parra, R., Poggiale, J.-C., Sánchez, E., Nguyen-Huu, T.: Aggregation of variables and application to population dynamics. In: Magal, P., Ruan, S. (eds.) Structured Population Models in Biology and Epidemiology. Lecture Notes Mathematics, vol. 1936, pp. 209–263. Springer, Berlin (2008)

    Chapter  Google Scholar 

  4. Auger, P., Lett, C., Nguyen-Huu, T.: Aggregation methods of time discrete models: review and application to host-parasitoid interactions. In: Abdulle, A., Banasiak, J., Damlamian, A., Sango, M. (eds.) Multiple Scales Problems in Biomathematics, Mechanics, Physics and Numerics. GAKUTO International Series Mathematical Sciences and Applications, vol. 31, pp. 255–276. Gakkotosho, Tokyo (2009)

    Google Scholar 

  5. Auger, P., Bravo de la Parra, R., Poggiale, J.C., Sánchez, E., Sanz, L.: Aggregation methods in dynamical systems and applications in population and community dynamics. Phys. Life Rev. 5, 79–105 (2008)

    Google Scholar 

  6. Banasiak, J., Capasso, V., Chaplain, M.A.J., Lachowicz, M., Miȩkisz, J. (eds.): Multiscale Problems in the Life Sciences. From Microscopic to Macroscopic. Lecture Notes Mathematics, vol. 1940. Springer, Berlin (2008)

    Google Scholar 

  7. Banasiak, J., Kimba Phongi, E., Lachowicz, M.: A singularly perturbed SIS model with age structure. Math. Biosci. Eng. 10, 499–521 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Banasiak, J., Lachowicz, M.: On a macroscopic limit of a kinetic model of alignment. Math. Models Methods Appl. Sci. 23(14), 2647–2670 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Banasiak, J., Mika, J.R.: Singularly perturbed telegraph equations with applications in the random walk theory. J. Appl. Math. Stoch. Anal. 11, 9–28 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Banasiak, J.: Singularly perturbed linear and semilinear hyperbolic systems: kinetic theory approach to some folk theorems. Acta Appl. Math. 49(2), 199–228 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ben-Jacob, E., Shochet, O., Tenenbaum, A., Czirók, A., Vicsek, T.: Cooperative formation of chiral patterns during growth of bacterial colonies. Phys. Rev. Lett. 75, 2899–2902 (1995)

    Article  Google Scholar 

  12. Belleni-Morante, A., Busoni, G.: A three-dimensional Boltzmann-like model of outgassing and contamination. Eur. J. Appl. Math. 8(2), 229–249 (1997)

    MATH  MathSciNet  Google Scholar 

  13. Bellomo, N., Carbonaro, B.: Toward a mathematical theory of living systems focusing on developmental biology and evolution: a review and perspectives. Phys. Life Rev. 8, 1–18 (2011)

    Article  Google Scholar 

  14. Bellomo, N., Bellouquid, A., Nieto, J., Soler, J.: Multiscale biological tissue models and flux-limited chemotaxis for multicellular growing systems. Math. Models Methods Appl. Sci. 20, 1179–1207 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Bellomo, N., Brezzi, F.: Mathematics and complexity in biological sciences. Math. Models Methods Appl. Sci. 21, 819–824 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Bellomo, N., Dogbé, C.: On the modeling of traffic and crowds: a survey of models, speculations, and perspectives. SIAM Rev. 53, 409–463 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Bellomo, N., Soler, J.: On the mathematical theory of the dynamics of swarms viewed as complex systems. Math. Models Methods Appl. Sci. 22(supp01) 1140006 (2012). doi:10.1142/S0218202511400069

    Google Scholar 

  18. Bender, C.M., Orszag, S.A.: Advanced Mathematical Methods for Scientists and Engineers. Asymptotic Methods and Perturbation Theory, Springer, New York (1999)

    Book  MATH  Google Scholar 

  19. Bobrowski, A.: Convergence of One-Parameter Operator Semigroups. In Models of Mathematical Biology and Elsewhere. Cambridge University Press, Cambridge, to appear

    Google Scholar 

  20. Braun, M.: Differential Equations and Their Applications. Springer, New York (1993)

    Book  MATH  Google Scholar 

  21. Bussemaker, H., Deutsch, A., Geigant, E.: Mean-field analysis of a dynamical phase transition in a cellular automaton model for collective motion. Phys. Rev. Lett. 78, 5018–5021 (1997)

    Article  Google Scholar 

  22. Carrillo, J., D’Orsogna, M., Panferov, V.: Double milling in self-propelled swarms from kinetic theory. Kinet. Relat. Models 2, 363–378 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Carrillo, J.A., Fornasier, M., Rosado, J., Toscani, G.: Asymptotic flocking dynamics for the kinetic Cucker-Smale model. SIAM J. Math. Anal. 42, 218–236 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Chang, K.W., Howes, F.A.: Nonlinear Singular Perturbation Phenomena: Theory and Application. Springer, New York (1984)

    Book  Google Scholar 

  25. Common Cold Fact Sheet, http://www.tdi.texas.gov/pubs/videoresource/fs-commoncold.pdf

  26. Cronin, J.: Electrically active cells and singular perturbation problems. Math. Intel. 12(4), 57–64 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  27. Czernawski, D.S., Romanowski, J.M., Stiepanowa, N.W.: Modelowanie matematyczne w biofizyce, PWN, Warszawa (1979) (Mathematical modelling in biophysics, in Polish, translation from Russian)

    Google Scholar 

  28. Degond, P., Liu, J.–G.: Hydrodynamics of self-alignment interactions with precession and derivation of the Landau–Lifschitz–Gilbert equation. Math. Models Methods Appl. Sci. 22(supp01) 1140001 (2012). doi:10.1142/S021820251140001X.

    Google Scholar 

  29. Donchev, Tz., Slavov, I.: Tikhonov’s theorem for functional-differential inclusions. Annuaire de L’Universite de Sofia “St. Kliment Ohridski”, Faculte de Mathématiques et Informatique, Livre 1–Mathématiques et Mecanique 89, 69–78 (1995)

    Google Scholar 

  30. Dontchev, A., Donchev, Tz., Slavov, I.: A Tikhonov-type theorem for singularly perturbed differential inclusions. Nonlinear Anal. Real World Appl. 26(9), 1547–1554 (1996)

    Google Scholar 

  31. Earn, D.J.D.: A Light Introduction to Modelling Recurrent Epidemics. In: Brauer, F., van den Driessche, P., Wu, J. (eds.) Mathematical Epidemiology. Lecture Notes Mathematics, vol. 1945, pp. 3–18. Springer, Berlin (2008)

    Chapter  Google Scholar 

  32. Eckhaus, W.: Asymptotic Analysis of Singular Perturbation. North Holland, Amsterdam (1979)

    Google Scholar 

  33. Eftimie, R.: Hyperbolic and kinetic models for self-organized biological aggregations and movement: a brief review. J. Math. Biol. 65, 35–75 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  34. Enskog, D.: Kinetische Theorie der Wärmeleitung. Kungl. Svenska Vetenskapsakad. Handl. 63, 3–14 (1922)

    Google Scholar 

  35. Erban, R., Haskovec, J.: From individual to collective behaviour of coupled velocity jump process: a locust example. Kinet. Relat. Models 5, 817–842 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  36. Ethier, S.N., Kurtz, T.G.: Markov Processes, Characterization and Convergence. Wiley, New York (1986)

    Book  MATH  Google Scholar 

  37. Feferman, Ch.L.: Existence and smoothness of the Navier-Stokes equation. http://www.claymath.org/millennium/Navier-Stokes_Equations/navier-stokes.pdf

  38. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Eqs. 31, 53–98 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  39. Geigant, E., Ladizhansky, K., Mogilner, A.: An intergrodifferential model for orientational distribution of F–Actin in cells. SIAM J. Appl. Math. 59, 787–809 (1998)

    Article  MathSciNet  Google Scholar 

  40. Goldstein, S.: On diffusion by discontinuous movements and the telegraph equation. Q. J. Mech. Appl. Math. 4, 129–156 (1951)

    Article  MATH  Google Scholar 

  41. Goldstein, J.E.: Semigroups of Linear Operators and Applications. Oxford University Press, New York (1985)

    MATH  Google Scholar 

  42. Golse, F., Salvarani, F.: The nonlinear diffusion limit for generalized Carleman models: the initial-boundary value problem. Nonlinearity 20, 927–942 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  43. Grimberg, G., Pauls, W., Frisch, U.: Genesis of d’Alembert’s paradox and analytical elaboration of the drag problem. Phys. D Nonlinear Phenomena 237, 1878–1886 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  44. Gruziel, M., Kmieć, P., Trylska, J., Lesyng, B.: Selected microscopic and mezoscopic modelling tools and models — an overview. In: Sokalski, W.A. (ed.) Molecular Materials with Specific Interactions, pp. 203–223. Springer, Dordrecht (2007)

    Chapter  Google Scholar 

  45. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Springer, Berlin 1991.

    Book  MATH  Google Scholar 

  46. Ha, S., Tadmor, E.: From particle to kinetic and hydrodynamic description of flocking. Kinet. Relat. Models 1, 415–435 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  47. Hek, G.: Geometrical singular perturbation theory in biological practice. J. Math. Biol. 60, 347–386 (2010)

    Article  MathSciNet  Google Scholar 

  48. Hilbert, D.: Begründung der kinetischen Gastheorie. Math. Ann. 72, 562–577 (1912)

    Article  MATH  MathSciNet  Google Scholar 

  49. Holmes, M.: Introduction to Perturbation Methods. Springer, New York (1995)

    Book  MATH  Google Scholar 

  50. Janssen, A.: The distance between the Kac process and the Wiener process with applications to generalized telegraph equations. J. Theor. Probab. 3, 349–360 (1990)

    Article  MATH  Google Scholar 

  51. Jones, C.K.R.T.: Geometric singular perturbation theory. In: Johnson R. (ed.) Dynamical Systems. Lecture Notes Mathematics, vol. 1609, pp. 44–118. Springer, Berlin (1995)

    Google Scholar 

  52. Joseph, D.D., Preziosi, L.: Heat waves, Rev. Mod. Phys. 61, 41–73 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  53. Kac, M.: A stochastic model related to the telegrapher’s equation. Rocky Mt. J. Math. 4, 497–509 (1974)

    Article  MATH  Google Scholar 

  54. Lions, P.L., Toscani, G.: Diffusive limit for finite velocity Boltzmann kinetic models. Rev. Mat. Iberoamericana 13, 473–513 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  55. Lomov, S.A.: Introduction to General Theory of Singular Perturbations. AMS, Providence (1992)

    MATH  Google Scholar 

  56. Lutscher, F.: Modeling alignment and movement of animals and cells. J. Math. Biol. 45, 234–260 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  57. Luenberger, D.G.: Introduction to Dynamic Systems. Theory, Models and Applications. Wiley, New York (1979)

    MATH  Google Scholar 

  58. McKendrick, A.G.: Applications of mathematics to medical problems. Proc. Edinb. Math. Soc. 40, 98–130 (1926)

    Google Scholar 

  59. Mika, J., Banasiak, J.: Singularly Perturbed Evolution Equations with Applications to Kinetic Theory. World Scientific, River Edge (1995)

    MATH  Google Scholar 

  60. Mika, J.R., Stankiewicz, R.: Asymptotic relationship between telegraphic and diffusion equations, Math. Methods Appl. Sci. 3, 21–37 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  61. Mogilner, A., Edelstein-Keshet, L.: Selecting a common direction. I. How orientational order can arise from simple contact responses between interacting cells. J. Math. Biol. 33, 619–660 (1995)

    MATH  MathSciNet  Google Scholar 

  62. Murray, J.D.: Mathematical Biology. Springer, New York (2003)

    MATH  Google Scholar 

  63. Mach, R., Schweitzer, F.: Modeling vortex swarming in Daphnia. Bull. Math. Biol. 69, 539–562 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  64. O’Malley, R.E., Jr.: Introduction to Singular Perturbation. Academic, New York (1974)

    Google Scholar 

  65. O’Malley, R.E., Jr.: Singular Perturbation Methods for Ordinary Differential Equations. Springer, New York (1991)

    Book  MATH  Google Scholar 

  66. Palczewski, A.: Exact and Chapman–Enskog solutions for the Carleman model. Math. Methods Appl. Sci. 6, 417–432 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  67. Pavliotis, G.A., Stuart, A.M.: Multiscale Methods. Averaging and Homogenization. Springer, New York (2008)

    MATH  Google Scholar 

  68. Piccinini, L.C., Stampacchia, G., Vidossich, G.: Ordinary Differential Equations in \({\mathbb{R}}^{n}\). Problems and Methods. Springer, New York (1984)

    MATH  Google Scholar 

  69. Povzner, A.Ya.: The Boltzmann equation in the kinetic theory of gases. Am. Math. Soc. Transl. 47(2), 193–216 (1962)

    Google Scholar 

  70. Prandtl, L.: Über Flüssigkeitsbewegung bei sehr kleiner Reibung (On the motion of fluids with little friction). Verhandlungen des dritten III Int. Math. Kongresses 1904, pp 484–491. Tuebner, Leipzig (1905)

    Google Scholar 

  71. Primi, I., Stevens, A., Velázquez, J.J.L.: Mass-selection in alignment models with non-deterministic effects. Commun. Partial Differ. Eqs. 34, 419–456 (2009)

    Article  MATH  Google Scholar 

  72. Salvarani, F., Toscani, G.: The diffusion limit of Carleman-type models in the range of very fast diffusion equation. J. Evol. Equ. 9, 67–80 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  73. Salvarani, F., Vázquez, J.L.: The diffusive limit for Carleman-type kinetic model. Nonlinearity 18, 1223–1248 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  74. Segel, L.A., Slemrod, M.: The quasi-steady-state assumption: a case study in perturbation. SIAM Rev. 31, 446–477 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  75. Seneta, E.: Nonnegative Matrices and Markov Chains. 2nd edn. Springer, New York (1981)

    Book  Google Scholar 

  76. Sun, Y., Wang, Z., Zhang, Y., Sundell, J.: In China, students in crowded dormitories with a low ventilation rate have more common colds: evidence for airborne transmission. PLoS ONE 6, e27140. doi:10.1371/journal.pone.0027140

    Google Scholar 

  77. Taylor, G.I.: Diffusion by continuous movements. Proc. London Math. Soc. 20, 196–212 (1920)

    Google Scholar 

  78. Thieme, H.R.: Mathematics in Population Biology. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  79. Tikhonov, A.N., Vasilyeva, A.B., Sveshnikov, A.G.: Differential Equations. Nauka, Moscow (1985 in Russian). English translation: Springer, Berlin (1985)

    Google Scholar 

  80. Toner, J., Tu, Y.: Long-range order in a two-dimensional dynamical XY model: how birds fly together. Phys. Rev. Lett. 75, 4326–4329 (1995)

    Article  Google Scholar 

  81. Vasilyeva, A.B., Butuzov, V.F.: Asymptotic Expansions of Solutions of Singularly Perturbed Equations. Nauka, Moscow (1973 in Russian)

    Google Scholar 

  82. Vasilyeva, A.B., Butuzov, V.F.: Singularly Perturbed Equations in Critical Cases. Moscow University Press, Moscow (1978 in Russian). English translation: Mathematical Research Center Technical Summary Report 2039, Madison (1980)

    Google Scholar 

  83. Verhulst, F.: Methods and Applications of Singular Perturbations. Springer, New York (2005)

    Book  MATH  Google Scholar 

  84. Wasow, W.R.: Asymptotic Expansions for Ordinary Differential Equations. Wiley Interscience, New York (1965)

    MATH  Google Scholar 

  85. Wasow, W.R.: The capriciousness of singular perturbations. Nieuw Arch. Wisk. 18, 190–210 (1970)

    MATH  MathSciNet  Google Scholar 

  86. Wu, Y., Jiang, Y., Kaiser, D., Alber, M.: Social interaction in Myxobacterial swarming. PLoS Comput. Biol. 3, 2546–2558 (2007)

    Article  MathSciNet  Google Scholar 

  87. Zauderer, E.: Partial Differential Equations of Applied Mathematics. 2nd edn. Wiley, New York (1988)

    Google Scholar 

  88. Zierep, J.: Similarity Laws and Modeling. Marcel Dekker, New York (1971)

    Google Scholar 

  89. Zohdi, T.I.: Mechanistic modeling of swarms. Comput. Methods Appl. Mech. Eng. 198, 2039–2051 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Banasiak, J., Lachowicz, M. (2014). Small Parameter Methods: Basic Ideas. In: Methods of Small Parameter in Mathematical Biology. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-05140-6_1

Download citation

Publish with us

Policies and ethics