Skip to main content

The Role of MicroRNA in Lung Cancer Drug Resistance and Targeted Therapy

  • Chapter
  • First Online:

Abstract

Lung cancer is one of the most common malignant tumors and is the leading cause of cancer mortality worldwide. However, drug resistance induced by chemotherapeutants to lung cancer cells is the primary issue during the chemotherapy of lung cancer. Many mechanisms such as the changes of drug metabolism related genes and signal pathways are involved in the chemoresistance. MicroRNAs (miRNAs) are a class of endogenetic, non-coding, short-chain and small RNAs that regulate cell growth, apoptosis and signal transduction. miRNA polymorphisms associate with drug metabolism and drug resistance formation. Furthermore, differentially expressed miRNAs play critical roles in prediction of the sensitivity to chemotherapeutic agents in lung cancer. Regulation of specific miRNA expression will break a new path for overcoming lung cancer resistance and the personalized therapy. Together, in this chapter we have discussed the current understanding of the role of miRNA on drug resistance, and the potential implications of miRNA in lung cancer targeted therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63:11–30

    Article  PubMed  Google Scholar 

  2. Nishio K, Nakamura T, Koh Y, Suzuki T, Fukumoto H, Saijo N (1999) Drug resistance in lung cancer. Curr Opin Oncol 11:109–115

    Article  PubMed  CAS  Google Scholar 

  3. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  4. Boeri M, Pastorino U, Sozzi G (2012) Role of microRNAs in lung cancer: microRNA signatures in cancer prognosis. Cancer J 18:268–274

    Article  PubMed  CAS  Google Scholar 

  5. Di Lisio L, Martinez N, Montes-Moreno S, Piris-Villaespesa M, Sanchez-Beato M, Piris MA (2012) The role of miRNAs in the pathogenesis and diagnosis of B-cell lymphomas. Blood 120:1782–1790

    Article  PubMed  CAS  Google Scholar 

  6. Kong YW, Ferland-McCollough D, Jackson TJ, Bushell M (2012) MicroRNAs in cancer management. Lancet Oncol 13:e249–e258

    Article  PubMed  CAS  Google Scholar 

  7. Melo SA, Kalluri R (2012) Molecular pathways: microRNAs as cancer therapeutics. Clin Cancer Res 18:4234–4239

    Article  PubMed  CAS  Google Scholar 

  8. Blower PE, Chung JH, Verducci JS et al (2008) MicroRNAs modulate the chemosensitivity of tumor cells. Mol Cancer Ther 7:1–9

    Article  PubMed  CAS  Google Scholar 

  9. Du L, Subauste MC, DeSevo C (2012) miR-337-3p and its targets STAT3 and RAP1A modulate taxane sensitivity in non-small cell lung cancers. PLoS One 7:e39167

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Galluzzi L, Morselli E, Vitale I et al (2010) miR-181a and miR-630 regulate cisplatin-induced cancer cell death. Cancer Res 70:1793–1803

    Article  PubMed  CAS  Google Scholar 

  11. Kim J, Kang Y, Kojima Y et al (2013) An endothelial apelin-FGF link mediated by miR-424 and miR-503 is disrupted in pulmonary arterial hypertension. Nat Med 19:74–82

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Maftouh M, Avan A, Galvani E, Peters GJ, Giovannetti E (2013) Molecular mechanisms underlying the role of microRNAs in resistance to epidermal growth factor receptor-targeted agents and novel therapeutic strategies for treatment of non-small-cell lung cancer. Crit Rev Oncog 18:317–326

    Article  PubMed  Google Scholar 

  13. Shanker M, Willcutts D, Roth JA, Ramesh R (2010) Drug resistance in lung cancer. Lung Cancer Targets Ther 1:4

    Google Scholar 

  14. Nooter K, Stoter G (1996) Molecular mechanisms of multidrug resistance in cancer chemotherapy. Pathol Res Pract 192:768–780

    Article  PubMed  CAS  Google Scholar 

  15. Krishna R, Mayer LD (2000) Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci 11:265–283

    Article  PubMed  CAS  Google Scholar 

  16. Liu FS (2009) Mechanisms of chemotherapeutic drug resistance in cancer therapy – a quick review. Taiwan J Obstet Gynecol 48:239–244

    Article  PubMed  Google Scholar 

  17. Gottesman MM (2002) Mechanisms of cancer drug resistance. Annu Rev Med 53:615–627

    Article  PubMed  CAS  Google Scholar 

  18. Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I, Gottesman MM (1999) Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol 39:361–398

    Article  PubMed  CAS  Google Scholar 

  19. Townsend DM, Tew KD (2003) The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene 22:7369–7375

    Article  PubMed  CAS  Google Scholar 

  20. Eastman A, Schulte N (1988) Enhanced DNA repair as a mechanism of resistance to cis-diamminedichloroplatinum(II). Biochemistry 27:4730–4734

    Article  PubMed  CAS  Google Scholar 

  21. Kavallaris M, Kuo DY, Burkhart CA et al (1997) Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific beta-tubulin isotypes. J Clin Invest 100:1282–1293

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Sethi T, Rintoul RC, Moore SM et al (1999) Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nat Med 5:662–668

    Article  PubMed  CAS  Google Scholar 

  23. Morin PJ (2003) Drug resistance and the microenvironment: nature and nurture. Drug Resist Updat 6:169–172

    Article  PubMed  CAS  Google Scholar 

  24. Green SK, Frankel A, Kerbel RS (1999) Adhesion-dependent multicellular drug resistance. Anticancer Drug Des 14:153–168

    PubMed  CAS  Google Scholar 

  25. Urgard E, Vooder T, Vosa U et al (2011) Metagenes associated with survival in non-small cell lung cancer. Cancer Inform 10:175–183

    Article  PubMed Central  PubMed  Google Scholar 

  26. Chen HY, Yu SL, Chen CH et al (2007) A five-gene signature and clinical outcome in non-small-cell lung cancer. N Engl J Med 356:11–20

    Article  PubMed  CAS  Google Scholar 

  27. Shedden K, Taylor JM, Enkemann SA et al (2008) Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat Med 14:822–827

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Heller G, Weinzierl M, Noll C et al (2012) Genome-wide miRNA expression profiling identifies miR-9-3 and miR-193a as targets for DNA methylation in non-small cell lung cancers. Clin Cancer Res 18:1619–1629

    Article  PubMed  CAS  Google Scholar 

  29. Bae S, Lee EM, Cha HJ et al (2011) Resveratrol alters microRNA expression profiles in A549 human non-small cell lung cancer cells. Mol Cells 32:243–249

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Gao W, Lu X, Liu L, Xu J, Feng D, Shu Y (2012) MiRNA-21: a biomarker predictive for platinum-based adjuvant chemotherapy response in patients with non-small cell lung cancer. Cancer Biol Ther 13:330–340

    Article  PubMed  CAS  Google Scholar 

  31. Calin GA, Sevignani C, Dumitru CD et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101:2999–3004

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Calin GA, Dumitru CD, Shimizu M et al (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99:15524–15529

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Jazbutyte V, Thum T (2010) MicroRNA-21: from cancer to cardiovascular disease. Curr Drug Targets 11:926–935

    Article  PubMed  CAS  Google Scholar 

  34. Zhong Z, Dong Z, Yang L, Gong Z (2012) miR-21 induces cell cycle at S phase and modulates cell proliferation by down-regulating hMSH2 in lung cancer. J Cancer Res Clin Oncol 138:1781–1788

    Article  PubMed  CAS  Google Scholar 

  35. Zhang JG, Wang JJ, Zhao F, Liu Q, Jiang K, Yang GH (2010) MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC). Clin Chim Acta 411:846–852

    Article  PubMed  CAS  Google Scholar 

  36. Yanaihara N, Caplen N, Bowman E et al (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9:189–198

    Article  PubMed  CAS  Google Scholar 

  37. Markou A, Tsaroucha EG, Kaklamanis L, Fotinou M, Georgoulias V, Lianidou ES (2008) Prognostic value of mature microRNA-21 and microRNA-205 overexpression in non-small cell lung cancer by quantitative real-time RT-PCR. Clin Chem 54:1696–1704

    Article  PubMed  CAS  Google Scholar 

  38. Rotunno M, Zhao Y, Bergen AW et al (2010) Inherited polymorphisms in the RNA-mediated interference machinery affect microRNA expression and lung cancer survival. Br J Cancer 103:1870–1874

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Lu Z, Liu M, Stribinskis V et al (2008) MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 27:4373–4379

    Article  PubMed  CAS  Google Scholar 

  40. Fassan M, Pizzi M, Giacomelli L et al (2011) PDCD4 nuclear loss inversely correlates with miR-21 levels in colon carcinogenesis. Virchows Arch 458:413–419

    Article  PubMed  CAS  Google Scholar 

  41. Garofalo M, Di Leva G, Romano G et al (2009) miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell 16:498–509

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Garofalo M, Quintavalle C, Di Leva G et al (2008) MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene 27:3845–3855

    Article  PubMed  CAS  Google Scholar 

  43. Navarro A, Marrades RM, Vinolas N et al (2009) MicroRNAs expressed during lung cancer development are expressed in human pseudoglandular lung embryogenesis. Oncology 76:162–169

    Article  PubMed  CAS  Google Scholar 

  44. Volinia S, Calin GA, Liu CG et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103:2257–2261

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Jiang S, Zhang HW, Lu MH et al (2010) MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res 70:3119–3127

    Article  PubMed  CAS  Google Scholar 

  46. O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435:839–843

    Article  PubMed  CAS  Google Scholar 

  47. Hayashita Y, Osada H, Tatematsu Y et al (2005) A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65:9628–9632

    Article  PubMed  CAS  Google Scholar 

  48. Ebi H, Sato T, Sugito N et al (2009) Counterbalance between RB inactivation and miR-17-92 overexpression in reactive oxygen species and DNA damage induction in lung cancers. Oncogene 28:3371–3379

    Article  PubMed  CAS  Google Scholar 

  49. Matsubara H, Takeuchi T, Nishikawa E et al (2007) Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17-92. Oncogene 26:6099–6105

    Article  PubMed  CAS  Google Scholar 

  50. Reinhart BJ, Slack FJ, Basson M et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906

    Article  PubMed  CAS  Google Scholar 

  51. Raponi M, Dossey L, Jatkoe T et al (2009) MicroRNA classifiers for predicting prognosis of squamous cell lung cancer. Cancer Res 69:5776–5783

    Article  PubMed  CAS  Google Scholar 

  52. Lee YS, Dutta A (2007) The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev 21:1025–1030

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Kumar MS, Erkeland SJ, Pester RE et al (2008) Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci U S A 105:3903–3908

    Article  PubMed Central  PubMed  Google Scholar 

  54. Johnson SM, Grosshans H, Shingara J et al (2005) RAS is regulated by the let-7 microRNA family. Cell 120:635–647

    Article  PubMed  CAS  Google Scholar 

  55. Tokumaru S, Suzuki M, Yamada H, Nagino M, Takahashi T (2008) let-7 regulates Dicer expression and constitutes a negative feedback loop. Carcinogenesis 29:2073–2077

    Article  PubMed  CAS  Google Scholar 

  56. Johnson CD, Esquela-Kerscher A, Stefani G et al (2007) The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res 67:7713–7722

    Article  PubMed  CAS  Google Scholar 

  57. Chin LJ, Ratner E, Leng S et al (2008) A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non-small cell lung cancer risk. Cancer Res 68:8535–8540

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  58. Landi MT, Zhao Y, Rotunno M et al (2010) MicroRNA expression differentiates histology and predicts survival of lung cancer. Clin Cancer Res 16:430–441

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Gallardo E, Navarro A, Vinolas N et al (2009) miR-34a as a prognostic marker of relapse in surgically resected non-small-cell lung cancer. Carcinogenesis 30:1903–1909

    Article  PubMed  CAS  Google Scholar 

  60. Tarasov V, Jung P, Verdoodt B et al (2007) Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 6:1586–1593

    Article  PubMed  CAS  Google Scholar 

  61. He L, He X, Lim LP et al (2007) A microRNA component of the p53 tumour suppressor network. Nature 447:1130–1134

    Article  PubMed  CAS  Google Scholar 

  62. Mudduluru G, Ceppi P, Kumarswamy R, Scagliotti GV, Papotti M, Allgayer H (2011) Regulation of Axl receptor tyrosine kinase expression by miR-34a and miR-199a/b in solid cancer. Oncogene 30:2888–2899

    Article  PubMed  CAS  Google Scholar 

  63. Fabbri M, Garzon R, Cimmino A et al (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A 104:15805–15810

    Article  PubMed Central  PubMed  Google Scholar 

  64. Crawford M, Brawner E, Batte K et al (2008) MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines. Biochem Biophys Res Commun 373:607–612

    Article  PubMed  CAS  Google Scholar 

  65. Bandi N, Zbinden S, Gugger M et al (2009) miR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or down-regulated in non-small cell lung cancer. Cancer Res 69:5553–5559

    Article  PubMed  CAS  Google Scholar 

  66. Nasser MW, Datta J, Nuovo G et al (2008) Down-regulation of micro-RNA-1 (miR-1) in lung cancer. Suppression of tumorigenic property of lung cancer cells and their sensitization to doxorubicin-induced apoptosis by miR-1. J Biol Chem 283:33394–33405

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  67. Patz EF Jr, Caporaso NE, Dubinett SM et al (2010) National Lung Cancer Screening Trial American College of Radiology Imaging Network Specimen Biorepository originating from the Contemporary Screening for the Detection of Lung Cancer Trial (NLST, ACRIN 6654): design, intent, and availability of specimens for validation of lung cancer biomarkers. J Thorac Oncol 5:1502–1506

    Article  PubMed Central  PubMed  Google Scholar 

  68. Chen X, Ba Y, Ma L et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18:997–1006

    Article  PubMed  CAS  Google Scholar 

  69. Lodes MJ, Caraballo M, Suciu D, Munro S, Kumar A, Anderson B (2009) Detection of cancer with serum miRNAs on an oligonucleotide microarray. PLoS One 4:e6229

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Roth C, Kasimir-Bauer S, Pantel K, Schwarzenbach H (2011) Screening for circulating nucleic acids and caspase activity in the peripheral blood as potential diagnostic tools in lung cancer. Mol Oncol 5:281–291

    Article  PubMed  CAS  Google Scholar 

  71. Rabinowits G, Gercel-Taylor C, Day JM, Taylor DD, Kloecker GH (2009) Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer 10:42–46

    Article  PubMed  CAS  Google Scholar 

  72. Keller A, Leidinger P, Borries A (2009) miRNAs in lung cancer – studying complex fingerprints in patient’s blood cells by microarray experiments. BMC Cancer 9:353

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. Pottelberge GR, Mestdagh P, Bracke KR et al (2011) MicroRNA expression in induced sputum of smokers and patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 183:898–906

    Article  PubMed  Google Scholar 

  74. Chen SY, Wang Y, Telen MJ, Chi JT (2008) The genomic analysis of erythrocyte microRNA expression in sickle cell diseases. PLoS One 3:e2360

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  75. Xie Y, Todd NW, Liu Z et al (2010) Altered miRNA expression in sputum for diagnosis of non-small cell lung cancer. Lung Cancer 67:170–176

    Article  PubMed Central  PubMed  Google Scholar 

  76. Xing L, Todd NW, Yu L, Fang H, Jiang F (2010) Early detection of squamous cell lung cancer in sputum by a panel of microRNA markers. Mod Pathol 23:1157–1164

    Article  PubMed  CAS  Google Scholar 

  77. Yu L, Todd NW, Xing L et al (2010) Early detection of lung adenocarcinoma in sputum by a panel of microRNA markers. Int J Cancer 127:2870–2878

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  78. Roa WH, Kim JO, Razzak R et al (2012) Sputum microRNA profiling: a novel approach for the early detection of non-small cell lung cancer. Clin Invest Med 35:E271

    PubMed  CAS  Google Scholar 

  79. Yu SL, Chen HY, Chang GC et al (2008) MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell 13:48–57

    Article  PubMed  CAS  Google Scholar 

  80. Patnaik SK, Kannisto E, Knudsen S, Yendamuri S (2010) Evaluation of microRNA expression profiles that may predict recurrence of localized stage I non-small cell lung cancer after surgical resection. Cancer Res 70:36–45

    Article  PubMed  CAS  Google Scholar 

  81. Hu Z, Chen J, Tian T et al (2008) Genetic variants of miRNA sequences and non-small cell lung cancer survival. J Clin Invest 118:2600–2608

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  82. Gao W, Yu Y, Cao H et al (2010) Deregulated expression of miR-21, miR-143 and miR-181a in non small cell lung cancer is related to clinicopathologic characteristics or patient prognosis. Biomed Pharmacother 64:399–408

    Article  PubMed  CAS  Google Scholar 

  83. Hu Z, Chen X, Zhao Y et al (2010) Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J Clin Oncol 28:1721–1726

    Article  PubMed  Google Scholar 

  84. Voortman J, Goto A, Mendiboure J et al (2010) MicroRNA expression and clinical outcomes in patients treated with adjuvant chemotherapy after complete resection of non-small cell lung carcinoma. Cancer Res 70:8288–8298

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  85. Weidhaas JB, Babar I, Nallur SM et al (2007) MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res 67:11111–11116

    Article  PubMed  CAS  Google Scholar 

  86. Fei J, Lan F, Guo M, Li Y, Liu Y (2008) Inhibitory effects of anti-miRNA oligonucleotides (AMOs) on A549 cell growth. J Drug Target 16:688–693

    Article  PubMed  CAS  Google Scholar 

  87. Blower PE, Verducci JS, Lin S et al (2007) MicroRNA expression profiles for the NCI-60 cancer cell panel. Mol Cancer Ther 6:1483–1491

    Article  PubMed  CAS  Google Scholar 

  88. Gaur A, Jewell DA, Liang Y et al (2007) Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res 67:2456–2468

    Article  PubMed  CAS  Google Scholar 

  89. Liu H, D’Andrade P, Fulmer-Smentek S et al (2010) mRNA and microRNA expression profiles of the NCI-60 integrated with drug activities. Mol Cancer Ther 9:1080–1091

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  90. Kong W, He L, Coppola M et al (2010) MicroRNA-155 regulates cell survival, growth, and chemosensitivity by targeting FOXO3a in breast cancer. J Biol Chem 285:17869–17879

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  91. Hwang JH, Voortman J, Giovannetti E et al (2010) Identification of microRNA-21 as a biomarker for chemoresistance and clinical outcome following adjuvant therapy in resectable pancreatic cancer. PLoS One 5:e10630

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  92. Xie L, Chen X, Wang L et al (2010) Cell-free miRNAs may indicate diagnosis and docetaxel sensitivity of tumor cells in malignant effusions. BMC Cancer 10:591

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  93. Yu ZW, Zhong LP, Ji T, Zhang P, Chen WT, Zhang CP (2010) MicroRNAs contribute to the chemoresistance of cisplatin in tongue squamous cell carcinoma lines. Oral Oncol 46:317–322

    Article  PubMed  CAS  Google Scholar 

  94. Ranade AR, Cherba D, Sridhar S et al (2010) MicroRNA 92a-2*: a biomarker predictive for chemoresistance and prognostic for survival in patients with small cell lung cancer. J Thorac Oncol 5:1273–1278

    Article  PubMed  Google Scholar 

  95. Lee JK, Havaleshko DM, Cho H et al (2007) A strategy for predicting the chemosensitivity of human cancers and its application to drug discovery. Proc Natl Acad Sci U S A 104:13086–13091

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  96. Mishra PJ, Bertino JR (2009) MicroRNA polymorphisms: the future of pharmacogenomics, molecular epidemiology and individualized medicine. Pharmacogenomics 10:399–416

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  97. Bertino JR, Banerjee D, Mishra PJ (2007) Pharmacogenomics of microRNA: a miRSNP towards individualized therapy. Pharmacogenomics 8:1625–1627

    Article  PubMed  CAS  Google Scholar 

  98. Mishra PJ, Banerjee D, Bertino JR (2008) MiRSNPs or MiR-polymorphisms, new players in microRNA mediated regulation of the cell: introducing microRNA pharmacogenomics. Cell Cycle 7:853–858

    Article  PubMed  CAS  Google Scholar 

  99. Mishra PJ, Humeniuk R, Longo-Sorbello GS, Banerjee D, Bertino JR (2007) A miR-24 microRNA binding-site polymorphism in dihydrofolate reductase gene leads to methotrexate resistance. Proc Natl Acad Sci U S A 104:13513–13518

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  100. Li J, Li ZN, Du YJ, Li XQ, Bao QL, Chen P (2009) Expression of MRP1, BCRP, LRP, and ERCC1 in advanced non-small-cell lung cancer: correlation with response to chemotherapy and survival. Clin Lung Cancer 10:414–421

    Article  PubMed  CAS  Google Scholar 

  101. Osawa K (2009) Gene polymorphisms and chemotherapy in non-small cell lung cancer. Zhongguo Fei Ai Za Zhi 12:837–840

    PubMed  CAS  Google Scholar 

  102. Narvaiza I, Aparicio O, Vera M et al (2006) Effect of adenovirus-mediated RNA interference on endogenous microRNAs in a mouse model of multidrug resistance protein 2 gene silencing. J Virol 80:12236–12247

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  103. Zhu H, Wu H, Liu X et al (2008) Role of MicroRNA miR-27a and miR-451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells. Biochem Pharmacol 76:582–588

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  104. To KK, Zhan Z, Litman T, Bates SE (2008) Regulation of ABCG2 expression at the 3′ untranslated region of its mRNA through modulation of transcript stability and protein translation by a putative microRNA in the S1 colon cancer cell line. Mol Cell Biol 28:5147–5161

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  105. Pan YZ, Morris ME, Yu AM (2009) MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells. Mol Pharmacol 75:1374–1379

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  106. Takagi S, Nakajima M, Mohri T, Yokoi T (2008) Post-transcriptional regulation of human pregnane X receptor by micro-RNA affects the expression of cytochrome P450 3A4. J Biol Chem 283:9674–9680

    Article  PubMed  CAS  Google Scholar 

  107. Tsuchiya Y, Nakajima M, Takagi S, Taniya T, Yokoi T (2006) MicroRNA regulates the expression of human cytochrome P450 1B1. Cancer Res 66:9090–9098

    Article  PubMed  CAS  Google Scholar 

  108. Yu AM (2007) Small interfering RNA in drug metabolism and transport. Curr Drug Metab 8:700–708

    Article  PubMed  CAS  Google Scholar 

  109. Chen K, Rajewsky N (2006) Natural selection on human microRNA binding sites inferred from SNP data. Nat Genet 38:1452–1456

    Article  PubMed  CAS  Google Scholar 

  110. Saunders MA, Liang H, Li WH (2007) Human polymorphism at microRNAs and microRNA target sites. Proc Natl Acad Sci U S A 104:3300–3305

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  111. Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39:1278–1284

    Article  PubMed  CAS  Google Scholar 

  112. Barnes MR, Deharo S, Grocock RJ, Brown JR, Sanseau P (2007) The micro RNA target paradigm: a fundamental and polymorphic control layer of cellular expression. Expert Opin Biol Ther 7:1387–1399

    Article  PubMed  CAS  Google Scholar 

  113. Ding L, Getz G, Wheeler DA et al (2008) Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455:1069–1075

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  114. Cho WC, Chow AS, Au JS (2009) Restoration of tumour suppressor hsa-miR-145 inhibits cancer cell growth in lung adenocarcinoma patients with epidermal growth factor receptor mutation. Eur J Cancer 45:2197–2206

    Article  PubMed  CAS  Google Scholar 

  115. Seike M, Goto A, Okano T et al (2009) MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers. Proc Natl Acad Sci U S A 106:12085–12090

    Article  PubMed Central  PubMed  Google Scholar 

  116. Garofalo M, Romano G, Di Leva G et al (2012) EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers. Nat Med 18:74–82

    CAS  Google Scholar 

  117. Bryant JL, Britson J, Balko JM et al (2012) A microRNA gene expression signature predicts response to erlotinib in epithelial cancer cell lines and targets EMT. Br J Cancer 106:148–156

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  118. Wang YS, Wang YH, Xia HP, Zhou SW, Schmid-Bindert G, Zhou CC (2012) MicroRNA-214 regulates the acquired resistance to gefitinib via the PTEN/AKT pathway in EGFR-mutant cell lines. Asian Pac J Cancer Prev 13:255–260

    Article  PubMed  Google Scholar 

  119. Rai K, Takigawa N, Ito S et al (2011) Liposomal delivery of MicroRNA-7-expressing plasmid overcomes epidermal growth factor receptor tyrosine kinase inhibitor-resistance in lung cancer cells. Mol Cancer Ther 10:1720–1727

    Article  PubMed  CAS  Google Scholar 

  120. Schaefer U, Voloshanenko O, Willen D, Walczak H (2007) TRAIL: a multifunctional cytokine. Front Biosci 12:3813–3824

    Article  PubMed  CAS  Google Scholar 

  121. Koschny R, Walczak H, Ganten TM (2007) The promise of TRAIL–potential and risks of a novel anticancer therapy. J Mol Med (Berl) 85:923–935

    Article  CAS  Google Scholar 

  122. Acunzo M, Visone R, Romano G et al (2012) miR-130a targets MET and induces TRAIL-sensitivity in NSCLC by downregulating miR-221 and 222. Oncogene 31:634–642

    PubMed Central  PubMed  CAS  Google Scholar 

  123. Incoronato M, Garofalo M, Urso L et al (2010) miR-212 increases tumor necrosis factor-related apoptosis-inducing ligand sensitivity in non-small cell lung cancer by targeting the antiapoptotic protein PED. Cancer Res 70:3638–3646

    Article  PubMed  CAS  Google Scholar 

  124. Garzon R, Marcucci G, Croce CM (2010) Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 9:775–789

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  125. Lanford RE, Hildebrandt-Eriksen ES, Petri A et al (2010) Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327:198–201

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  126. Lindow M, Kauppinen S (2012) Discovering the first microRNA-targeted drug. J Cell Biol 199:407–412

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  127. Fabbri M (2012) TLRs as miRNA receptors. Cancer Res 72:6333–6337

    Article  PubMed  CAS  Google Scholar 

  128. Allen KE, Weiss GJ (2010) Resistance may not be futile: microRNA biomarkers for chemoresistance and potential therapeutics. Mol Cancer Ther 9:3126–3136

    Article  PubMed  CAS  Google Scholar 

  129. Trang P, Medina PP, Wiggins JF et al (2010) Regression of murine lung tumors by the let-7 microRNA. Oncogene 29:1580–1587

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  130. Fontana L, Fiori ME, Albini S et al (2008) Antagomir-17-5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM. PLoS One 3:e2236

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  131. Trang P, Wiggins JF, Daige CL et al (2011) Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol Ther 19:1116–1122

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  132. Esquela-Kerscher A, Trang P, Wiggins JF et al (2008) The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle 7:759–764

    Article  PubMed  CAS  Google Scholar 

  133. Wiggins JF, Ruffino L, Kelnar K et al (2010) Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res 70:5923–5930

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  134. Muniyappa MK, Dowling P, Henry M et al (2009) MiRNA-29a regulates the expression of numerous proteins and reduces the invasiveness and proliferation of human carcinoma cell lines. Eur J Cancer 45:3104–3118

    Article  PubMed  CAS  Google Scholar 

  135. Gibbons DL, Lin W, Creighton CJ et al (2009) Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes Dev 23:2140–2151

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  136. Ma L, Reinhardt F, Pan E et al (2010) Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol 28:341–347

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  137. Sarkar FH, Li Y, Wang Z, Kong D, Ali S (2010) Implication of microRNAs in drug resistance for designing novel cancer therapy. Drug Resist Updat 13:57–66

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  138. Guo L, Liu Y, Bai Y, Sun Y, Xiao F, Guo Y (2010) Gene expression profiling of drug-resistant small cell lung cancer cells by combining microRNA and cDNA expression analysis. Eur J Cancer 46:1692–1702

    Article  PubMed  CAS  Google Scholar 

  139. Zhu W, Shan X, Wang T, Shu Y, Liu P (2010) miR-181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines. Int J Cancer 127:2520–2529

    Article  PubMed  CAS  Google Scholar 

  140. Wang X, Dong K, Gao P et al (2013) MicroRNA-34a sensitizes lung cancer cell lines to DDP treatment independent of p53 status. Cancer Biother Radiopharm 28:45–50

    Article  PubMed  CAS  Google Scholar 

  141. Zhang S, Zhang C, Li Y, Wang P, Yue Z, Xie S (2011) miR-98 regulates cisplatin-induced A549 cell death by inhibiting TP53 pathway. Biomed Pharmacother 65:436–442

    Article  PubMed  CAS  Google Scholar 

  142. Han Z, Yang Q, Liu B et al (2012) MicroRNA-622 functions as a tumor suppressor by targeting K-Ras and enhancing the anticarcinogenic effect of resveratrol. Carcinogenesis 33:131–139

    Article  PubMed  CAS  Google Scholar 

  143. Feng B, Wang R, Chen LB (2012) MiR-100 resensitizes docetaxel-resistant human lung adenocarcinoma cells (SPC-A1) to docetaxel by targeting Plk1. Cancer Lett 317:184–191

    Article  PubMed  CAS  Google Scholar 

  144. Feng B, Wang R, Song HZ, Chen LB (2012) MicroRNA-200b reverses chemoresistance of docetaxel-resistant human lung adenocarcinoma cells by targeting E2F3. Cancer 118:3365–3376

    Article  PubMed  CAS  Google Scholar 

  145. Zhu X, Li H, Long L (2012) miR-126 enhances the sensitivity of non-small cell lung cancer cells to anticancer agents by targeting vascular endothelial growth factor A. Acta Biochim Biophys Sin (Shanghai) 44:519–526

    Article  CAS  Google Scholar 

  146. Zhang X, Zhu J, Xing R et al (2012) miR-513a-3p sensitizes human lung adenocarcinoma cells to chemotherapy by targeting GSTP1. Lung Cancer 77:488–494

    Article  PubMed  Google Scholar 

  147. Cui EH, Li HJ, Hua F et al (2013) Serum microRNA 125b as a diagnostic or prognostic biomarker for advanced NSCLC patients receiving cisplatin-based chemotherapy. Acta Pharmacol Sin 34:309–313

    Article  PubMed  CAS  Google Scholar 

  148. Franchina T, Amodeo V, Bronte G et al (2014) Circulating miR-22, miR-24 and miR-34a as novel predictive biomarkers to pemetrexed-based chemotherapy in advanced non small cell lung cancer. J Cell Physiol 229:97–99

    PubMed  CAS  Google Scholar 

  149. Oh JS, Kim JJ, Byun JY, Kim IA (2010) Lin28-let7 modulates radiosensitivity of human cancer cells with activation of K-Ras. Int J Radiat Oncol Biol Phys 76:5–8

    Article  PubMed  CAS  Google Scholar 

  150. Wang XC, Du LQ, Tian LL et al (2011) Expression and function of miRNA in postoperative radiotherapy sensitive and resistant patients of non-small cell lung cancer. Lung Cancer 72:92–99

    Article  PubMed  Google Scholar 

  151. Arora H, Qureshi R, Jin S, Park AK, Park WY (2011) miR-9 and let-7g enhance the sensitivity to ionizing radiation by suppression of NFkappaB1. Exp Mol Med 43:298–304

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  152. Chen S, Wang H, Ng WL, Curran WJ, Wang Y (2011) Radiosensitizing effects of ectopic miR-101 on non-small-cell lung cancer cells depend on the endogenous miR-101 level. Int J Radiat Oncol Biol Phys 81:1524–1529

    Article  PubMed  CAS  Google Scholar 

  153. Balca-Silva J, Sousa Neves S, Goncalves AC et al (2012) Effect of miR-34b overexpression on the radiosensitivity of non-small cell lung cancer cell lines. Anticancer Res 32:1603–1609

    PubMed  CAS  Google Scholar 

  154. Salim H, Akbar NS, Zong D et al (2012) miRNA-214 modulates radiotherapy response of non-small cell lung cancer cells through regulation of p38MAPK, apoptosis and senescence. Br J Cancer 107:1361–1373

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  155. Liu YJ, Lin YF, Chen YF et al (2013) MicroRNA-449a enhances radiosensitivity in CL1-0 lung adenocarcinoma cells. PLoS One 8:e62383

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  156. Cho WC (2010) MicroRNAs as therapeutic targets for lung cancer. Expert Opin Ther Targets 14:1005–1008

    Article  PubMed  CAS  Google Scholar 

  157. Cho WC (2010) Conquering cancer through discovery research. IUBMB Life 62:655–659

    Article  PubMed  CAS  Google Scholar 

  158. Young DD, Connelly CM, Grohmann C, Deiters A (2010) Small molecule modifiers of microRNA miR-122 function for the treatment of hepatitis C virus infection and hepatocellular carcinoma. J Am Chem Soc 132:7976–7981

    Article  PubMed  CAS  Google Scholar 

  159. Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4:721–726

    Article  PubMed  CAS  Google Scholar 

  160. Gonzalez-Aseguinolaza G, Prieto J (2010) Durable correction of inherited metabolic liver disorders requires preventing transgene off-targeting from gene therapy vectors: the value of microRNAs. Gastroenterology 139:726–729

    Article  PubMed  Google Scholar 

  161. Fischer A, Hacein-Bey-Abina S, Cavazzana-Calvo M (2010) 20 years of gene therapy for SCID. Nat Immunol 11:457–460

    Article  PubMed  CAS  Google Scholar 

  162. Rossbach M (2010) Small non-coding RNAs as novel therapeutics. Curr Mol Med 10:361–368

    Article  PubMed  CAS  Google Scholar 

  163. Seto AG (2010) The road toward microRNA therapeutics. Int J Biochem Cell Biol 42:1298–1305

    Article  PubMed  CAS  Google Scholar 

  164. Wahid F, Shehzad A, Khan T, Kim YY (2010) MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta 1803:1231–1243

    Article  PubMed  CAS  Google Scholar 

  165. Nana-Sinkam SP, Croce CM (2013) Clinical applications for microRNAs in cancer. Clin Pharmacol Ther 93:98–104

    Article  PubMed  CAS  Google Scholar 

  166. Uchino K, Ochiya T, Takeshita F (2013) RNAi Therapeutics and Applications of MicroRNAs in Cancer Treatment. Jpn J Clin Oncol 43:596–607

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaohui Gong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gong, Z. et al. (2014). The Role of MicroRNA in Lung Cancer Drug Resistance and Targeted Therapy. In: Sarkar, F. (eds) MicroRNA Targeted Cancer Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-05134-5_3

Download citation

Publish with us

Policies and ethics