Skip to main content

Challenges for Quantitative Analysis of Collective Adaptive Systems

  • Conference paper
  • First Online:
Trustworthy Global Computing (TGC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8358))

Included in the following conference series:

Abstract

We are surrounded by both natural and engineered collective systems. Such systems include many entities, which interact locally and, without necessarily having any global knowledge, nevertheless work together to create a system with discernible characteristics at the global level; a phenomenon sometimes termed emergence. Examples include swarms of bees, flocks of birds, spread of disease through a population, traffic jams and robot swarms. Many of these systems are also adaptive in the sense that the constituent entities can respond to their perception of the current state of the system at large, changing their behaviour accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    www.quanticol.eu

References

  1. Ajmone Marsan, M., Conte, G., Balbo, G.: A class of generalized stochastic Petri nets for the performance evaluation of multiprocessor systems. ACM Trans. Comput. Syst. 2(2), 93–122 (1984)

    Article  Google Scholar 

  2. Bernardo, M., Gorrieri, R.: A tutorial on EMPA: a theory of concurrent processes with nondeterminism, priorities, probabilities and time. Theor. Comput. Sci. 202(1–2), 1–54 (1998)

    MATH  MathSciNet  Google Scholar 

  3. Bortolussi, L., Hillston, J.: Checking individual agent behaviours in Markov population models by fluid approximation. In: Bernardo, M., de Vink, E., Di Pierro, A., Wiklicky, H. (eds.) SFM 2013. LNCS, vol. 7938, pp. 113–149. Springer, Heidelberg (2013)

    Google Scholar 

  4. Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of collective system behaviour: A tutorial. Perform. Eval. 70(5), 317–349 (2013)

    Article  Google Scholar 

  5. Bortolussi, L., Lanciani, R.: Model checking Markov population models by central limit approximation. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 123–138. Springer, Heidelberg (2013)

    Google Scholar 

  6. Bradley, J.T., Gilmore, S.T., Hillston, J.: Analysing distributed Internet worm attacks using continuous state-space approximation of process algebra models. J. Comput. Syst. Sci. 74(6), 1013–1032 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. De Nicola, R., Ferrari, G., Loreti, M., Pugliese, R.: A language-based approach to autonomic computing. In: Beckert, B., Bonsangue, M.M. (eds.) FMCO 2011. LNCS, vol. 7542, pp. 25–48. Springer, Heidelberg (2012)

    Google Scholar 

  8. Guenther, M.C., Bradley, J.T.: Mean-field analysis of data flows in wireless sensor networks. In: ACM/SPEC International Conference on Performance, Engineering, ICPE’13, pp. 51–62 (2013)

    Google Scholar 

  9. Hayden, R.A., Bradley, J.T.: A fluid analysis framework for a Markovian process algebra. Theor. Comput. Sci. 411(22–24), 2260–2297 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hayden, R.A., Stefanek, A., Bradley, J.T.: Fluid computation of passage-time distributions in large Markov models. Theor. Comput. Sci. 413(1), 106–141 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hermanns, H. (ed.): Interactive Markov Chains: The Quest for Quantified Quality. LNCS, vol. 2428. Springer, Heidelberg (2002)

    Google Scholar 

  12. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  13. Hillston, J.: Fluid flow approximation of PEPA models. In: 2nd International Conference on the Quantitative Evaluaiton of Systems (QEST 2005), pp. 33–43 (2005)

    Google Scholar 

  14. Hillston, J., Kloul, L.: Formal techniques for performance analysis: blending SAN and PEPA. Formal Aspects Comput. 19(1), 3–33 (2007)

    Article  MATH  Google Scholar 

  15. Hillston, J., Tribastone, M., Gilmore, S.: Stochastic process algebras: from individuals to populations. Comput. J. 55(7), 866–881 (2012)

    Article  Google Scholar 

  16. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM: probabilistic model checking for performance and reliability analysis. SIGMETRICS Perform. Eval. Rev. 36(4), 40–45 (2009)

    Article  Google Scholar 

  17. Massink, M., Brambilla, M., Latella, D., Dorigo, M., Birattari, M.: On the use of Bio-PEPA for modelling and analysing collective behaviours in swarm robotics. Swarm Intell. 7(2–3), 20–228 (2013)

    Google Scholar 

  18. Massink, M., Latella, D., Bracciali, A., Harrison, M.D., Hillston, J.: Scalable context-dependent analysis of emergency egress models. Formal Aspects Comput. 24(2), 267–302 (2012)

    Article  Google Scholar 

  19. Massink, M., Harrison, M.D., Latella, D.: Scalable analysis of collective behaviour in smart service systems. In: Proceedings of the 2010 ACM Symposium on Applied Computing (SAC), pp. 1173–1180 (2010)

    Google Scholar 

  20. Milner, R.: The Space and Motion of Communicating Agents. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  21. Tribastone, M., Ding, J., Gilmore, S., Hillston, J.: Fluid rewards for a stochastic process algebra. IEEE Trans. Softw. Eng. 38(4), 861–874 (2012)

    Article  Google Scholar 

  22. Tribastone, M., Hillston, J., Gilmore, S.: Scalable differential analysis of process algebra models. IEEE Trans. Softw. Eng. 38(1), 205–219 (2012)

    Article  Google Scholar 

Download references

Acknowledgement

This work is partially supported by the EU project QUANTICOL, 600708.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane Hillston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Hillston, J. (2014). Challenges for Quantitative Analysis of Collective Adaptive Systems. In: Abadi, M., Lluch Lafuente, A. (eds) Trustworthy Global Computing. TGC 2013. Lecture Notes in Computer Science(), vol 8358. Springer, Cham. https://doi.org/10.1007/978-3-319-05119-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05119-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05118-5

  • Online ISBN: 978-3-319-05119-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics