The Express Drivers: Chimeric Antigen Receptor-Redirected T Cells Make It to the Clinic

  • Hinrich Abken
  • Winfried S. Wels
  • Klaus Kühlcke


Adoptive cell therapy with chimeric antigen receptor (CAR)-redirected T cells recently showed spectacular efficacy in early-phase trials in the treatment of leukemia. The therapeutic approach utilizes patients’ T cells engineered ex vivo with a CAR which is a recombinant receptor molecule consisting in the extracellular part of an antibody-derived binding domain for major histocompatibility complex (MHC)-independent target recognition and in the intracellular part of T-cell receptor (TCR)-derived signaling domains for T-cell activation upon target engagement. The so-called T-body strategy allows T-cell targeting toward any cell surface structure for which an antibody is available. T cells are processed under Good Manufacturing Practice (GMP) conditions, engineered by viral vector- or nucleic acid-based gene transfer with the CAR, amplified to therapeutic numbers, and readministered to the patient. Successes in recent trials sustain the hope that specifically redirected patient T cells can control cancer in the long term.


Natural Killer Cell Chimeric Antigen Receptor Good Manufacture Practice Adoptive Cell Therapy CD28 Costimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Work in the laboratory of HA was supported by the Deutsche Forschungsgemeinschaft, Else Kröner-Fresenius Stiftung, Wilhelm Sander-Stiftung, the Deutsche Krebshilfe, the European Union (European Regional Development Fund – Investing in your future), the German federal state North Rhine-Westphalia (NRW), and the Fortune program of the Medical Faculty of the University of Cologne. Work in the laboratory of WSW was supported by the German Federal Ministry of Education and Research, Deutsche Forschungsgemeinschaft, LOEWE Center for Cell and Gene Therapy Frankfurt, and by institutional funds of the Georg-Speyer-Haus, Frankfurt.


  1. Altenschmidt U, Kahl R, Moritz D, Schnierle BS, Gerstmayer B, Wels W, Groner B (1996) Cytolysis of tumor cells expressing the Neu/erbB-2, erbB-3, and erbB-4 receptors by genetically targeted naive T lymphocytes. Clin Cancer Res 2(6):1001–1008PubMedGoogle Scholar
  2. Altvater B, Landmeier S, Pscherer S, Temme J, Schweer K, Kailayangiri S, Campana D, Juergens H, Pule M, Rossig C (2009) 2B4 (CD244) signaling by recombinant antigen-specific chimeric receptors costimulates natural killer cell activation to leukemia and neuroblastoma cells. Clin Cancer Res 15(15):4857–4866PubMedCentralPubMedCrossRefGoogle Scholar
  3. Arai S, Meagher R, Swearingen M, Myint H, Rich E, Martinson J, Klingemann H (2008) Infusion of the allogeneic cell line NK-92 in patients with advanced renal cell cancer or melanoma: a phase I trial. Cytotherapy 10(6):625–632PubMedCrossRefGoogle Scholar
  4. Bach NL, Waks T, Schindler DG, Eshhar Z (1994) Functional expression in mast cells of chimeric receptors with antibody specificity. Cell Biophys 24–25:229–236PubMedCrossRefGoogle Scholar
  5. Bach N, Waks T, Eshhar Z (1995) Specific lysis of tumor cells by an NK-like cell line transfected with chimeric receptor genes. Tumor Target 1:203–209Google Scholar
  6. Beecham EJ, Ma Q, Ripley R, Junghans RP (2000) Coupling CD28 co-stimulation to immunoglobulin T-cell receptor molecules: the dynamics of T-cell proliferation and death. J Immunother 23(6):631–642PubMedCrossRefGoogle Scholar
  7. Boissel L, Betancur M, Wels WS, Tuncer H, Klingemann H (2009) Transfection with mRNA for CD19 specific chimeric antigen receptor restores NK cell mediated killing of CLL cells. Leuk Res 33(9):1255–1259PubMedCentralPubMedCrossRefGoogle Scholar
  8. Brentjens R, Yeh R, Bernal Y, Riviere I, Sadelain M (2010) Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: case report of an unforeseen adverse event in a phase I clinical trial. Mol Ther 18(4):666–668PubMedCentralPubMedCrossRefGoogle Scholar
  9. Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG, Bartido S, Stefanski J, Taylor C, Olszewska M, Borquez-Ojeda O, Qu J, Wasielewska T, He Q, Bernal Y, Rijo IV, Hedvat C, Kobos R, Curran K, Steinherz P, Jurcic J, Rosenblat T, Maslak P, Frattini M, Sadelain M (2013) CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 5(177):177ra138Google Scholar
  10. Chmielewski M, Hombach A, Heuser C, Adams GP, Abken H (2004) T cell activation by antibody-like immunoreceptors: increase in affinity of the single-chain fragment domain above threshold does not increase T cell activation against antigen-positive target cells but decreases selectivity. J Immunol 173(12):7647–7653PubMedCrossRefGoogle Scholar
  11. Chmielewski M, Hombach AA, Abken H (2011a) CD28 cosignalling does not affect the activation threshold in a chimeric antigen receptor-redirected T-cell attack. Gene Ther 18(1):62–72PubMedCrossRefGoogle Scholar
  12. Chmielewski M, Kopecky C, Hombach AA, Abken H (2011b) IL-12 release by engineered T cells expressing chimeric antigen receptors can effectively Muster an antigen-independent macrophage response on tumor cells that have shut down tumor antigen expression. Cancer Res 71(17):5697–5706PubMedCrossRefGoogle Scholar
  13. Chmielewski M, Hombach AA, Abken H (2014) Of CARs and TRUCKs: chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma. Immunol Rev 257:83–90PubMedCrossRefGoogle Scholar
  14. Chu J, Deng Y, Benson DM, Jr., He S, Hughes T, Zhang J, Peng Y, Mao H, Yi L, Ghoshal K, He X, Devine SM, Zhang X, Caligiuri MA, Hofmeister CC, Yu J (2013) CS1-specific chimeric antigen receptor (CAR)-engineered natural killer cells enhance In Vitro and In Vivo anti-tumor activity against human multiple myeloma. Leukemia. doi: 10.1038/leu.2013.279 (in press)
  15. Eshhar Z (2008) The T-body approach: redirecting T cells with antibody specificity. Handb Exp Pharmacol 181:329–342PubMedCrossRefGoogle Scholar
  16. Esser R, Müller T, Stefes D, Kloess S, Seidel D, Gillies SD, Aperlo-Iffland C, Huston JS, Uherek C, Schönfeld K, Tonn T, Huebener N, Lode HN, Koehl U, Wels WS (2012) NK cells engineered to express a GD2 -specific antigen receptor display built-in ADCC-like activity against tumour cells of neuroectodermal origin. J Cell Mol Med 16(3):569–581PubMedCrossRefGoogle Scholar
  17. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, Teachey DT, Chew A, Hauck B, Wright JF, Milone MC, Levine BL, June CH (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368(16):1509–1518PubMedCrossRefGoogle Scholar
  18. Hombach A, Abken H (2007) Costimulation tunes tumor-specific activation of redirected T cells in adoptive immunotherapy. Cancer Immunol Immunother 56(5):731–737PubMedCrossRefGoogle Scholar
  19. Hombach AA, Abken H (2013a) Of chimeric antigen receptors and antibodies: OX40 and 41BB costimulation sharpen up T cell-based immunotherapy of cancer. Immunotherapy 5(7):677–681PubMedCrossRefGoogle Scholar
  20. Hombach AA, Abken H (2013b) Young T cells age during a redirected anti-tumor attack: chimeric antigen receptor-provided dual costimulation is half the battle. Front Immunol 4:135PubMedCentralPubMedCrossRefGoogle Scholar
  21. Hombach A, Heuser C, Sircar R, Tillmann T, Diehl V, Kruis W, Pohl C, Abken H (1997) T cell targeting of TAG72+ tumor cells by a chimeric receptor with antibody-like specificity for a carbohydrate epitope. Gastroenterology 113(4):1163–1170PubMedCrossRefGoogle Scholar
  22. Hombach AA, Schildgen V, Heuser C, Finnern R, Gilham DE, Abken H (2007) T cell activation by antibody-like immunoreceptors: the position of the binding epitope within the target molecule determines the efficiency of activation of redirected T cells. J Immunol 178(7):4650–4657PubMedCrossRefGoogle Scholar
  23. Hombach AA, Chmielewski M, Rappl G, Abken H (2013a) Adoptive immunotherapy with redirected T cells produces CCR7- cells that are trapped in the periphery and benefit from combined CD28-OX40 costimulation. Hum Gene Ther 24(3):259–269PubMedCrossRefGoogle Scholar
  24. Hombach AA, Rappl G, Abken H (2013b) Arming cytokine-induced killer cells with chimeric antigen receptors: CD28 outperforms combined CD28-OX40 “super-stimulation”. Mol Ther 21(12):2268–2277PubMedCrossRefGoogle Scholar
  25. Imai C, Iwamoto S, Campana D (2005) Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood 106(1):376–383PubMedCentralPubMedCrossRefGoogle Scholar
  26. James SE, Greenberg PD, Jensen MC, Lin Y, Wang J, Till BG, Raubitschek AA, Forman SJ, Press OW (2008) Antigen sensitivity of CD22-specific chimeric TCR is modulated by target epitope distance from the cell membrane. J Immunol 180(10):7028–7038PubMedCentralPubMedCrossRefGoogle Scholar
  27. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, June CH (2011) T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 3(95):95ra73PubMedCentralPubMedGoogle Scholar
  28. Kaneko S, Mastaglio S, Bondanza A, Ponzoni M, Sanvito F, Aldrighetti L, Radrizzani M, La Seta-Catamancio S, Provasi E, Mondino A, Nagasawa T, Fleischhauer K, Russo V, Traversari C, Ciceri F, Bordignon C, Bonini C (2009) IL-7 and IL-15 allow the generation of suicide gene-modified alloreactive self-renewing central memory human T lymphocytes. Blood 113(5):1006–1015PubMedCrossRefGoogle Scholar
  29. Kershaw MH, Westwood JA, Parker LL, Wang G, Eshhar Z, Mavroukakis SA, White DE, Wunderlich JR, Canevari S, Rogers-Freezer L, Chen CC, Yang JC, Rosenberg SA, Hwu P (2006) A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res 12(20 Pt 1):6106–6115PubMedCentralPubMedCrossRefGoogle Scholar
  30. Klebanoff CA, Gattinoni L, Torabi-Parizi P, Kerstann K, Cardones AR, Finkelstein SE, Palmer DC, Antony PA, Hwang ST, Rosenberg SA, Waldmann TA, Restifo NP (2005) Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proc Natl Acad Sci U S A 102(27):9571–9576PubMedCentralPubMedCrossRefGoogle Scholar
  31. Klingemann HG (2013) Cellular therapy of cancer with natural killer cells-where do we stand? Cytotherapy 15(10):1185–1194PubMedCrossRefGoogle Scholar
  32. Kruschinski A, Moosmann A, Poschke I, Norell H, Chmielewski M, Seliger B, Kiessling R, Blankenstein T, Abken H, Charo J (2008) Engineering antigen-specific primary human NK cells against HER-2 positive carcinomas. Proc Natl Acad Sci U S A 105(45):17481–17486PubMedCentralPubMedCrossRefGoogle Scholar
  33. Lamers CH, Sleijfer S, Vulto AG, Kruit WH, Kliffen M, Debets R, Gratama JW, Stoter G, Oosterwijk E (2006) Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol 24(13):e20–e22PubMedCrossRefGoogle Scholar
  34. Lanier LL (2008) Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol 9(5):495–502PubMedCentralPubMedCrossRefGoogle Scholar
  35. Mezzanzanica D, Canevari S, Mazzoni A, Figini M, Colnaghi MI, Waks T, Schindler DG, Eshhar Z (1998) Transfer of chimeric receptor gene made of variable regions of tumor-specific antibody confers anticarbohydrate specificity on T cells. Cancer Gene Ther 5(6):401–407PubMedGoogle Scholar
  36. Moon EK, Carpenito C, Sun J, Wang LC, Kapoor V, Predina J, Powell DJ Jr, Riley JL, June CH, Albelda SM (2011) Expression of a functional CCR2 receptor enhances tumor localization and tumor eradication by retargeted human T cells expressing a mesothelin-specific chimeric antibody receptor. Clin Cancer Res 17(14):4719–4730PubMedCentralPubMedCrossRefGoogle Scholar
  37. Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA (2010) Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 18(4):843–851PubMedCentralPubMedCrossRefGoogle Scholar
  38. Müller T, Uherek C, Maki G, Chow KU, Schimpf A, Klingemann HG, Tonn T, Wels WS (2008) Expression of a CD20-specific chimeric antigen receptor enhances cytotoxic activity of NK cells and overcomes NK-resistance of lymphoma and leukemia cells. Cancer Immunol Immunother 57(3):411–423PubMedCrossRefGoogle Scholar
  39. Parente-Pereira AC, Burnet J, Ellison D, Foster J, Davies DM, van der Stegen S, Burbridge S, Chiapero-Stanke L, Wilkie S, Mather S, Maher J (2011) Trafficking of CAR-engineered human T cells following regional or systemic adoptive transfer in SCID beige mice. J Clin Immunol 31(4):710–718PubMedCrossRefGoogle Scholar
  40. Park JR, Digiusto DL, Slovak M, Wright C, Naranjo A, Wagner J, Meechoovet HB, Bautista C, Chang WC, Ostberg JR, Jensen MC (2007) Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Mol Ther 15(4):825–833PubMedGoogle Scholar
  41. Porter DL, Levine BL, Kalos M, Bagg A, June CH (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365(8):725–733PubMedCentralPubMedCrossRefGoogle Scholar
  42. Sahm C, Schönfeld K, Wels WS (2012) Expression of IL-15 in NK cells results in rapid enrichment and selective cytotoxicity of gene-modified effectors that carry a tumor-specific antigen receptor. Cancer Immunol Immunother 61(9):1451–1461PubMedCrossRefGoogle Scholar
  43. Singh H, Figliola MJ, Dawson MJ, Olivares S, Zhang L, Yang G, Maiti S, Manuri P, Senyukov V, Jena B, Kebriaei P, Champlin RE, Huls H, Cooper LJ (2013) Manufacture of clinical-grade CD19-specific T cells stably expressing chimeric antigen receptor using Sleeping Beauty system and artificial antigen presenting cells. PLoS One 8(5):e64138PubMedCentralPubMedCrossRefGoogle Scholar
  44. Song DG, Ye Q, Carpenito C, Poussin M, Wang LP, Ji C, Figini M, June CH, Coukos G, Powell DJ Jr (2011) In vivo persistence, tumor localization, and antitumor activity of CAR-engineered T cells is enhanced by costimulatory signaling through CD137 (4-1BB). Cancer Res 71(13):4617–4627PubMedCrossRefGoogle Scholar
  45. Suhoski MM, Golovina TN, Aqui NA, Tai VC, Varela-Rohena A, Milone MC, Carroll RG, Riley JL, June CH (2007) Engineering artificial antigen-presenting cells to express a diverse array of co-stimulatory molecules. Mol Ther 15(5):981–988PubMedCentralPubMedCrossRefGoogle Scholar
  46. Sutlu T, Nystrom S, Gilljam M, Stellan B, Applequist SE, Alici E (2012) Inhibition of intracellular antiviral defense mechanisms augments lentiviral transduction of human natural killer cells: implications for gene therapy. Hum Gene Ther 23(10):1090–1100PubMedCentralPubMedCrossRefGoogle Scholar
  47. Tavri S, Jha P, Meier R, Henning TD, Müller T, Hostetter D, Knopp C, Johansson M, Reinhart V, Boddington S, Sista A, Wels WS, Daldrup-Link HE (2009) Optical imaging of cellular immunotherapy against prostate cancer. Mol Imaging 8(1):15–26PubMedGoogle Scholar
  48. Till BG, Jensen MC, Wang J, Qian X, Gopal AK, Maloney DG, Lindgren CG, Lin Y, Pagel JM, Budde LE, Raubitschek A, Forman SJ, Greenberg PD, Riddell SR, Press OW (2012) CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. Blood 119(17):3940–3950PubMedCentralPubMedCrossRefGoogle Scholar
  49. Tonn T, Schwabe D, Klingemann HG, Becker S, Esser R, Koehl U, Suttorp M, Seifried E, Ottmann OG, Bug G (2013) Treatment of patients with advanced cancer with the natural killer cell line NK-92. Cytotherapy 15(12):1563–1570PubMedCrossRefGoogle Scholar
  50. Uherek C, Tonn T, Uherek B, Becker S, Schnierle B, Klingemann HG, Wels W (2002) Retargeting of natural killer-cell cytolytic activity to ErbB2-expressing cancer cells results in efficient and selective tumor cell destruction. Blood 100(4):1265–1273PubMedGoogle Scholar
  51. Vera JF, Brenner LJ, Gerdemann U, Ngo MC, Sili U, Liu H, Wilson J, Dotti G, Heslop HE, Leen AM, Rooney CM (2010) Accelerated production of antigen-specific T cells for preclinical and clinical applications using gas-permeable rapid expansion cultureware (G-Rex). J Immunother 33(3):305–315PubMedCentralPubMedCrossRefGoogle Scholar
  52. Weber J, Atkins M, Hwu P, Radvanyi L, Sznol M, Yee C (2011) White paper on adoptive cell therapy for cancer with tumor-infiltrating lymphocytes: a report of the CTEP subcommittee on adoptive cell therapy. Clin Cancer Res 17(7):1664–1673PubMedCrossRefGoogle Scholar
  53. Westwood JA, Smyth MJ, Teng MW, Moeller M, Trapani JA, Scott AM, Smyth FE, Cartwright GA, Power BE, Honemann D, Prince HM, Darcy PK, Kershaw MH (2005) Adoptive transfer of T cells modified with a humanized chimeric receptor gene inhibits growth of Lewis-Y-expressing tumors in mice. Proc Natl Acad Sci U S A 102(52):19051–19056PubMedCentralPubMedCrossRefGoogle Scholar
  54. Zhao Y, Moon E, Carpenito C, Paulos CM, Liu X, Brennan AL, Chew A, Carroll RG, Scholler J, Levine BL, Albelda SM, June CH (2010) Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res 70(22):9053–9061PubMedCentralPubMedCrossRefGoogle Scholar
  55. Zhong S, Malecek K, Johnson LA, Yu Z, Vega-Saenz de Miera E, Darvishian F, McGary K, Huang K, Boyer J, Corse E, Shao Y, Rosenberg SA, Restifo NP, Osman I, Krogsgaard M (2013) T-cell receptor affinity and avidity defines antitumor response and autoimmunity in T-cell immunotherapy. Proc Natl Acad Sci U S A 110(17):6973–6978PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Hinrich Abken
    • 1
    • 2
  • Winfried S. Wels
    • 3
  • Klaus Kühlcke
    • 4
  1. 1.Center for Molecular Medicine CologneUniversity of CologneCologneGermany
  2. 2.Department I for Internal MedicineUniversity Hospital CologneCologneGermany
  3. 3.Chemotherapeutisches Forschungsinstitut Georg-Speyer-HausInstitut für Tumorbiologie und experimentelle TherapieFrankfurt am MainGermany
  4. 4.EUFETS GmbHIdar-ObersteinGermany

Personalised recommendations