Elliptic Mathematical Programs with Equilibrium Constraints in Function Space: Optimality Conditions and Numerical Realization

  • Michael HintermüllerEmail author
  • Antoine Laurain
  • Caroline Löbhard
  • Carlos N. Rautenberg
  • Thomas M. Surowiec
Part of the International Series of Numerical Mathematics book series (ISNM, volume 165)


Recent advances in the analytical as well as numerical treatment of classes of elliptic mathematical programs with equilibrium constraints (MPECs) in function space are discussed. In particular, stationarity conditions for control problems with point tracking objectives and subject to the obstacle problem as well as for optimization problems with variational inequality constraints and pointwise constraints on the gradient of the state are derived. For the former problem class including the case of L 2-tracking-type objectives (rather than pointwise ones) a bundle-free solution method as well as adaptive finite element discretizations are introduced. Moreover, the analytical and numerical treatment of shape design problems subject to elliptic variational inequality constraints is highlighted. With respect to problems involving gradient constraints, the paper ends with a fixed-point-Moreau-Yosida-based semismooth Newton solver for a class of nonlinear elliptic quasi-variational inequality problems.


MPECs and MPCCs in function space Gradient constraints Point-tracking Adaptive finite element methods Nonlinear elliptic quasivariational inequality problem Optimal shape design subject to elliptic variational inequalities 

Mathematics Subject Classification (2010)

49K20 49M25 65K10 90C33 



The authors acknowledge support by DFG-Project “Elliptic Mathematical Programs with Equilibrium Constraints (MPECs) in Function Space: Optimality Conditions and Numerical Realization” within the DFG Priority Program SPP 1253 on “Optimization with Partial Differential Equations”, project C28 of the DFG Research Center “Matheon” as well as the Austrian Science Fund FWF under START-Project Y305 “Interfaces and Free Boundaries”.


  1. 1.
    Y. Achdou, An inverse problem for a parabolic variational inequality arising in volatility calibration with american options. SIAM J. Control Optim. 43(5), 1583–1615 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    V. Barbu, Optimal Control of Variational Inequalities. Volume 100 of Research Notes in Mathematics (Pitman Advanced Publishing, Boston, 1984)Google Scholar
  3. 3.
    V. Barbu, A. Friedman, Optimal design of domains with free-boundary problems. SIAM J. Control Optim. 29(3), 623–637 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    R. Becker, H. Kapp, R. Rannacher, Adaptive finite element methods for optimal control of partial differential equations: basic concept. SIAM J. Control Optim. 39(1), 113–132 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    A. Bensoussan, J.-L. Lions, Controle impulsionnel et inéquations quasi-variationnelles d’évolutions. C. R. Acad. Sci. Paris 276, 1333–1338 (1974)MathSciNetGoogle Scholar
  6. 6.
    C. Brett, C. Elliott, M. Hintermüller, C. Löbhard, A dual-weighted residual approach to adaptivity for optimal control of elliptic variational inequalities with pointwise objective functionals. IFB-Report, 67, 1–28 (2013)Google Scholar
  7. 7.
    H. Brézis, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, in Contributions to Nonlinear Functional Analysis (Academic, New York, 1971), pp. 101–156Google Scholar
  8. 8.
    H. Brézis, G. Stampacchia, Sur la regularité de la solution d’inéquations elliptiques. Bulletin de la Société Mathématique de France 96, 153–180 (1968)zbMATHGoogle Scholar
  9. 9.
    C.M. Elliott, On a variational inequality formulation of an electrochemical machining moving boundary problem and its approximation by the finite element method. J. Inst. Math. Appl. 25(2), 121–131 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    G. Fichera, Problemi elettrostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno. Memorie dell’Accademia Nazionale dei Lincei 8, 91–140 (1964)MathSciNetGoogle Scholar
  11. 11.
    A. Gaevskaya, M. Hintermüller, R. Hoppe, Adaptive finite elements for optimally controlled elliptic variational inequalities of obstacle type. IFB-Report No. 68, 09 2013Google Scholar
  12. 12.
    A. Günther, M. Hinze, A posteriori error control of a state constrained elliptic control problem. J. Numer. Math. 16(4), 307–322 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    A. Henrot, M. Pierre, Variation et optimisation de formes. Volume 48 of Mathématiques et Applications (Springer, Berlin, 1992). Une analyse géométriqueGoogle Scholar
  14. 14.
    R. Herzog, C. Meyer, G. Wachsmuth, C-stationarity for optimal control of static plasticity with linear kinematic hardening. SIAM J. Control Optim. 50(5), 3052–3082 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    R. Herzog, C. Meyer, G. Wachsmuth, B- and strong stationarity for optimal control of static plasticity with hardening. SIAM J. Optim. 23(1), 321–352 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    M. Hintermüller, R. Hoppe, Goal-oriented adaptivity in control constrained optimal control of partial differential equations. SIAM J. Control Optim. 47, 1721–1743 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    M. Hintermüller, I. Kopacka, Mathematical programs with complementarity constraints in function space: C- and strong stationarity and a path-following algorithm. SIAM J. Optim. 20, 868–902 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    M. Hintermüller, I. Kopacka, A smooth penalty approach and a nonlinear multigrid algorithm for elliptic MPECs. Comput. Optim. Appl. 50(1), 111–145 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    M. Hintermüller, A. Laurain, Optimal shape design subject to elliptic variational inequalities. SIAM J. Control Optim. 49(3), 1015–1047 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    M. Hintermüller, C.N. Rautenberg, A sequential minimization technique for elliptic quasi-variational inequalities with gradient constraints. SIAM J. Optim. 22(4), 1224–1257 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    M. Hintermüller, T. Surowiec, First order optimality conditions for elliptic mathematical programs with equilibrium constraints via variational analysis. SIAM J. Optim. 21(4), 1561–1593 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    M. Hintermüller, T. Surowiec, A bundle-free implicit programming approach for a class of MPECs in function space. IFB-Report, 60, 2012Google Scholar
  23. 23.
    M. Hintermüller, K. Ito, K. Kunisch, The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13, 865–888 (2002)CrossRefMathSciNetGoogle Scholar
  24. 24.
    M. Hintermüller, R. Hoppe, C. Löbhard, ESAIM: Control, Optimization and Calculus of Variations 20(2), 524–546 (2014)CrossRefzbMATHGoogle Scholar
  25. 25.
    K. Ito, K. Kunisch, An active set strategy based on the augmented lagrangian formulation for image restoration. ESAIM: Math. Model. Numer. Anal. 33(1), 1–21 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    T. Keil, A smooth penalty approach for MPECs with gradient constrained lower-level problems in Banach spaces. Master’s thesis, Humboldt-Universität zu Berlin, 2013Google Scholar
  27. 27.
    D. Kinderlehrer, G. Stampacchia, An Introduction to Variational Inequalities and Their Applications (Academic, New York, 1980)zbMATHGoogle Scholar
  28. 28.
    M. Kunze, J. Rodrigues, An elliptic quasi-variational inequality with gradient constraints and some of its applications. Math. Methods Appl. Sci. 23, 897–908 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    J. Lions, G. Stampacchia, Variational inequalities. Commun. Pure Appl. Math. 20, 493–519 (1967)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    J.-L. Lions, Sur le côntrole optimal des systemes distribuées. Enseigne 19, 125–166 (1973)zbMATHGoogle Scholar
  31. 31.
    J.-L. Lions, Various topics in the theory of optimal control of distributed systems, in optimal control theory and its applications, part I. Lect. Notes Econ. Math. Syst. 105, 166–309 (1974)CrossRefGoogle Scholar
  32. 32.
    Z. Luo, J. Pang, D. Ralph, Mathematical Programs with Equilibrium Constraints (Cambridge University Press, Cambridge/New York, 1996)CrossRefGoogle Scholar
  33. 33.
    F. Mignot, Controle dans les inéquations variationnelles elliptiques. Funct. Anal. 22, 130–185 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    F. Mignot, J. Puel, Optimal control in some variational inequalities. SIAM J. Control Optim. 22(3), 466–476 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    P. Neittaanmäki, J. Sokołowski, J.-P. Zolésio, Optimization of the domain in elliptic variational inequalities. Appl. Math. Optim. 18(1), 85–98 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    P. Neittaanmaki, J. Sprekels, D. Tiba, Optimization of Elliptic Systems: Theory and Applications. Springer Monographs in Mathematics (Springer, New York, 2006)Google Scholar
  37. 37.
    J. Outrata, M. Kočvara, J. Zowe, Nonsmooth Approach to Optimization Problems with Equilibrium Constraints: Theory, Applications, and Numerical Results. No. 152 in Nonconvex Optimization and Its Applications (Kluwer Academic, Dordrecht/Boston, 1998)Google Scholar
  38. 38.
    H. Scheel, S. Scholtes, Mathematical programs with complementarity constraints: stationarity, optimality, and sensitivity. Math. Oper. Res. 25(1), 1–22 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    A. Schiela, D. Wachsmuth, Convergence analysis of smoothing methods for optimal control of stationary variational inequalities with control constraints. ESAIM: Math. Model. Numer. Anal. 47(5), 771–787 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    J. Sokołowski, J.-P. Zolésio, Introduction to Shape Optimization: Shape Sensitivity Analysis. Volume 16 of Springer Series in Computational Mathematics (Springer, Berlin, 1992)Google Scholar
  41. 41.
    D. Tiba, Propriétés de controlabilité pour les systèmes elliptiques, la méthode des domaines fictifs et problèmes de design optimal, in Optimization, Optimal Control and Partial Differential Equations (Iaşi, 1992). Volume 107 of International Series Numerical Mathematics (Birkhäuser, Basel, 1992), pp. 251–261Google Scholar
  42. 42.
    B. Vexler, W. Wollner, Adaptive finite elements for elliptic optimization problems with control constraints. SIAM J. Control Optim. 47(1), 509–534 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    J. Yvon, Contrôle optimal de systèmes gouvernés par des inéquations variationnelles. PhD thesis, Université de Compiegne, Paris, 1973Google Scholar
  44. 44.
    J. Yvon, Optimal control of systems governed by variational inequalities, in 5th Conference on Optimization Techniques. Lecture Notes in Computer Science (Springer, Berlin/Heidelberg, 1973), Rome, Italy, pp. 265–275Google Scholar
  45. 45.
    J. Zowe, S. Kurcyusz, Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5, 49–62 (1979)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Michael Hintermüller
    • 1
    Email author
  • Antoine Laurain
    • 2
  • Caroline Löbhard
    • 1
  • Carlos N. Rautenberg
    • 3
  • Thomas M. Surowiec
    • 1
  1. 1.Institut für MathematikHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Institut für MathematikTechnische Universität BerlinBerlinGermany
  3. 3.Department of Mathematics and Scientific ComputingKarl-Franzens-University of GrazGrazAustria

Personalised recommendations