Advertisement

Optimal Design with Bounded Retardation for Problems with Non-separable Adjoints

  • Torsten BosseEmail author
  • Nicolas R. Gauger
  • Andreas Griewank
  • Stefanie Günther
  • Lena Kaland
  • Claudia Kratzenstein
  • Lutz Lehmann
  • Anil Nemili
  • Emre Özkaya
  • Thomas Slawig
Chapter
Part of the International Series of Numerical Mathematics book series (ISNM, volume 165)

Abstract

In the natural and enginiering sciences numerous sophisticated simulation models involving PDEs have been developed. In our research we focus on the transition from such simulation codes to optimization, where the design parameters are chosen in such a way that the underlying model is optimal with respect to some performance measure. In contrast to general non-linear programming we assume that the models are too large for the direct evaluation and factorization of the constraint Jacobian but that only a slowly convergent fixed-point iteration is available to compute a solution of the model for fixed parameters. Therefore, we pursue the so-called One-shot approach, where the forward simulation is complemented with an adjoint iteration, which can be obtained by handcoding, the use of Automatic Differentiation techniques, or a combination thereof. The resulting adjoint solver is then coupled with the primal fixed-point iteration and an optimization step for the design parameters to obtain an optimal solution of the problem. To guarantee the convergence of the method an appropriate sequencing of these three steps, which can be applied either in a parallel (Jacobi) or in a sequential (Seidel) way, and a suitable choice of the preconditioner for the design step are necessary. We present theoretical and experimental results for two choices, one based on the reduced Hessian and one on the Hessian of an augmented Lagrangian. Furthermore, we consider the extension of the One-shot approach to the infinite dimensional case and problems with unsteady PDE constraints.

Keywords

Simulation Optimization PDE Automatic differentiation Fixed-point solver Retardation factor One-shot Piggyback Numerics 

Notes

Acknowledgements

The work was funded by the DFG (Deutsche Forschungsgesellschaft) as part of the DFG Schwerpunktprogramm 1253 – Optimization with partial differential equations. Our sincere thanks are due to several other groups of the SPP 1253 (Bock et al., Schulz et al.) for their stimulating comments and discussions. We are especially grateful for the many helpful suggestions and for the encouraging interest shown by other research groups outside of the SPP 1253: Alonso et al., Farrell et al., Koziel et al., Oschlies et al., De los Reyes et al., Thiele et al., and Wang et al.

References

  1. 1.
    G. Biros, O. Ghattas, Parallel Lagrange-Newton-Krylov-Schur methods for PDE-constrained optimization. Part I: the Krylov-Schur solver. SIAM J. Sci. Comput. 27(2), 687–713 (2005)zbMATHMathSciNetGoogle Scholar
  2. 2.
    G. Biros, O. Ghattas, Parallel lagrange-Newton-Krylov-Schur methods for pde-constrained optimization. part i: the krylov-schur solver. SIAM J. Sci. Comput. 27(2), 687–713 (2005)Google Scholar
  3. 3.
    A. Borzì, V. Schulz, Multigrid methods for PDE optimization. SIAM Rev. 51(2), 361–39 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    T. Bosse, A. Griewank, N.R. Gauger, S. Günther, V. Schulz, One-shot approaches to design optimzation, in Trends in PDE Constrained Optimization, ed. by P. Benner, G. Leugering, S. Engell, A. Griewank, H. Harbrecht, M. Hinze, R. Rannacher, S. Ulbrich. International Series of Numerical Mathematics (Springer, Basel, 2014). To appearGoogle Scholar
  5. 5.
    T. Bosse, L. Lehmann, A. Griewank, Adaptive sequencing of primal, dual, and design steps in simulation based optimization. Comput. Optim. Appl. (2013). doi:10.1007/s10589-013-9606-zGoogle Scholar
  6. 6.
    A. Carnarius, F. Thiele, E. Özkaya, A. Nemili, N.R. Gauger, Optimal control of unsteady flows using a discrete and a continuous adjoint approach, in System Modelling and Optimization. IFIP Advances in Information and Communication Technology, vol. 391, ed. by D. Hömberg, F. Tröltzsch (Springer, Berlin/Heidelberg, 2011), pp. 318–327Google Scholar
  7. 7.
    L.B. Ciric, A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 45(2), 267–273 (1974)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    N. Gauger, A. Griewank, A. Hamdi, C. Kratzenstein, E. Özkaya, T. Slawig, Automated extension of fixed point pde solvers for optimal design with bounded retardation, in Constrained Optimization and Optimal Control for Partial Differential Equations, ed. by G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz, M. Ulbrich, S. Ulbrich. International Series of Numerical Mathematics, vol. 160 (Springer, Basel, 2012), pp. 99–122Google Scholar
  9. 9.
    A. Griewank, E. Özkaya, Quantifying retardation in simulation based optimization, in Optimization, simulation, and control. Springer Optimization and its Application, vol. 76 (Springer, New York, 2013), pp. 79–96Google Scholar
  10. 10.
    S. Günther, N.R. Gauger, Q. Wang, Extension of the One-shot method for optimal control with unsteady PDEs, in Proceedings of the International Conference on Evolutionary and Deterministic Methods for Design, Optimization and Control with Applications to Industrial and Societal Problems (EUROGEN), Spain, 2013Google Scholar
  11. 11.
    A. Hamdi, A. Griewank, Reduced quasi-Newton method for simultaneous design and optimization. Comput. Optim. Appl. 49(3), 521–548 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    M. Heinkenschloss, L.N. Vicente, Analysis of inexact trust-region sqp algorithms. SIAM J. Optim. 12(2), 283–302 (2002)CrossRefMathSciNetGoogle Scholar
  13. 13.
    L. Kaland, J.C. De Los Reyes, N.R. Gauger, One-shot methods in function space for PDE-constrained optimal control problems. Optim. Methods Softw. 1–30 (2013). doi:10.1080/10556788.2013.774397Google Scholar
  14. 14.
    C. Kratzenstein, T. Slawig, Simultaneous model spin-up and parameter identification with the One-shot method in a climate model example. Int. J. Optim. Control 3(2), 99–110 (2013)zbMATHMathSciNetGoogle Scholar
  15. 15.
    U. Naumann, The art of differentiating computer programs: an introduction to algorithmic differentiation. Software, Environments and Tools (Society for Industrial and Applied Mathematics, Philadelphia, 2011)Google Scholar
  16. 16.
    J. Nocedal, S.J. Wright, Numerical Optimization. Springer Series in Operations Research and Financial Engineering, 2nd edn. (Springer, New York, 2006)Google Scholar
  17. 17.
    P. Parekh, M.J. Follows, E.A. Boyle, Decoupling of iron and phosphate in the global ocean. Glob. Biogeochem. Cycles 19(2), GB2020 (2005)Google Scholar
  18. 18.
    T. Slawig, K. Zickfeld, Parameter optimization using algorithmic differentiation in a reduced-forms model of the atlantic thermohaline circulation. Nonlinear Anal. Real World Appl. 5/3, 501–518 (2004)Google Scholar
  19. 19.
    C. Zhu, R.H. Byrd, J. Nocedal, L-bfgs-b: algorithm 778: L-bfgs-b, fortran routines for large scale bound constrained optimization. ACM Trans. Math. Softw. 23(4), 550–560 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    K. Zickfeld, T. Slawig, S. Rahmstorf, A low-order model for the response of the atlantic thermohaline circulation to climate change. Ocean. Dyn. 54, 8–26 (2004)CrossRefGoogle Scholar
  21. 21.
    J.C. Ziems, S. Ulbrich, Adaptive multilevel inexact sqp methods for pde-constrained optimization. SIAM J. Optim. 21(1), 1–40 (2011)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Torsten Bosse
    • 1
    Email author
  • Nicolas R. Gauger
    • 2
  • Andreas Griewank
    • 1
  • Stefanie Günther
    • 2
  • Lena Kaland
    • 2
  • Claudia Kratzenstein
    • 3
  • Lutz Lehmann
    • 1
  • Anil Nemili
    • 2
  • Emre Özkaya
    • 2
  • Thomas Slawig
    • 3
  1. 1.Department of MathematicsHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Department of Mathematics and Center for Computational Engineering ScienceRWTH Aachen UniversityAachenGermany
  3. 3.Christian-Albrechts-Universität zu KielKielGermany

Personalised recommendations