One-Shot Approaches to Design Optimzation

  • Torsten Bosse
  • Nicolas R. Gauger
  • Andreas GriewankEmail author
  • Stefanie Günther
  • Volker Schulz
Part of the International Series of Numerical Mathematics book series (ISNM, volume 165)


The paper describes general methodologies for the solution of design optimization problems. In particular we outline the close relations between a fixed point solver based piggy back approach and a Reduced SQP method in Jacobi and Seidel variants. The convergence rate and general efficacy is shown to be strongly dependent on the characteristics of the state equation and the objective function. In the QP scenario where the state equation is linear and the objective quadratic, finite termination in two steps is obtained by the Seidel variant with Newton state solver and perfect design space preconditioning. More generally, it is shown that the retardation factor between simulation and optimization is bounded below by 2 with the difference depending on a cross-term representing the total sensitivity of the adjoint equation with respect to the design.


Simulation Optimization PDE Automatic differentiation Fixed-point solver Retardation factor Convergence Numerics 

Mathematics Subject Classification (2010)

Primary: 90C30 68U20 Secondary: 35Q68 35Q90 35Q93 


  1. 1.
    A. Battermann, E. Sachs, Block preconditioners for KKT systems in PDE-governed optimal control problems, in Fast Solution of Discretized Optimization Problems, ed. by K.-H. Hoffmann, R.H.W. Hoppe, V. Schulz. Number 138 in ISNM (Birkhaeuser, Basel, 2001), pp. 1–18Google Scholar
  2. 2.
    R. Becker, R. Rannacher, An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer. 10(1), 1–102 (2001)zbMATHMathSciNetGoogle Scholar
  3. 3.
    M. Benzi, A.J. Wathen, Some preconditioning techniques for saddle point problems, in Model Order Reduction: Theory, Research Aspects and Applications, ed. by W.H.A. Schilders, H.A. Vorst, J. Rommes. Mathematics in Industry, vol. 13 (Springer, Berlin/Heidelberg, 2008), pp. 195–211Google Scholar
  4. 4.
    G. Biros, O. Ghattas, Parallel lagrange-Newton-Krylov-Schur methods for PDE-constrained optimization. Part I: the Krylov-Schur solver. SIAM J. Sci. Comput. 27(2), 687–713 (2005)zbMATHMathSciNetGoogle Scholar
  5. 5.
    G. Biros, O. Ghattas, Parallel Lagrange-Newton-Krylov-Schur methods for pde-constrained optimization. Part II: the Lagrange-Newton solver, and its application to optimal control of steady viscous flows. SIAM J. Sci. Comput. 27(2), 714–739 (2005)Google Scholar
  6. 6.
    H.G. Bock, Numerical treatment of inverse problems in chemical reaction kinetics, in Modelling of Chemical Reaction Systems, ed. by K.H. Ebert, P. Deuflhard, W. Jäger. Number 18 in Springer Series in Chemical Physics (Springer-Verlag Berlin Heidelberg, 1981)Google Scholar
  7. 7.
    H.G. Bock, Randwertproblemmethoden zur Parameteridentifizierung in Systemen nichtlinearer Differentialgleichungen, Bonner Mathematische Schriften, Vol. 183, (Rheinische Friedrich-Wilhelms-Universität, Bonn, 1987)Google Scholar
  8. 8.
    H.G. Bock, V.H. Schulz, Mathematical aspects of CFD-model based optimization, in Optimization and Computational Fluid Dynamics, ed. by D. Thevenin, G. Janiga (Springer-Verlag Berlin Heidelberg, 2008), pp. 61–78Google Scholar
  9. 9.
    H.G. Bock, E. Kostina, J.P. Schöder, On the role of natural level functions to achieve global convergence for damped Newton methods. Syst. Model. Optim. IFIP Int. Fed. Inf. Process. 46, 51–74 (2000)Google Scholar
  10. 10.
    H.G. Bock, A. Potschka, S. Sager, J.P. Schlöder, On the connection between forward and optimization problem in one-shot one-step methods, in Constrained Optimization and Optimal Control for Partial Differential Equations, ed. by G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz, M. Ulbrich, S. Ulbrich. International Series of Numerical Mathematics, vol. 160 (Springer, Basel, 2012), pp. 37–49Google Scholar
  11. 11.
    J.F. Bonnans, A. Shapiro, Perturbation Analysis of Optimization Problems. Springer Series in Operations Research (Springer, New York, 2000)Google Scholar
  12. 12.
    A. Borzì, V. Schulz, Multigrid methods for PDE optimization. SIAM Rev. 51(2), 361–39 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    A. Borzì, V. Schulz, Computational Optimization of Systems Governed by Partial Differential Equations. Number 08 in SIAM Book Series on Computational Science and Engineering (SIAM, Philadelphia, 2012)Google Scholar
  14. 14.
    T. Bosse, L. Lehmann, A. Griewank, Adaptive sequencing of primal, dual, and design steps in simulation based optimization. Comput. Optim. Appl. 57(3), 731–760 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    G. Chavent, J. Jaffré, Mathematical Models and Finite Elements for Reservoir Simulation: Single Phase, Multiphase, and Multicomponent Flows Through Porous Media. Studies in Mathematics and Its Applications (Elsevier, Amsterdam, 1986)Google Scholar
  16. 16.
    E.J. Cramer, P.D. Frank, G.R. Shubin, J.E. Dennis, R Lewis, On alternative problem formulations for multidisciplinary design optimization, in Proceedings of the Fourth AIAA/USAF/NASA/OAI Symposium on Multidisciplinary Analysis and Optimization, Cleveland, 1992, AIAA-Paper 92-4572, 518–530 (1992)Google Scholar
  17. 17.
    P. Deuflhard, Newton Methods for Nonlinear Problems, Affine Invariance and Adaptive Algorithms. Number 35 in Springer Series in Computational Mathematics (Springer, Berlin/Heidelberg, 2004)Google Scholar
  18. 18.
    M.A. Diaz Viera, P. Sahay, M. Coronado, A.O. Tapia, Mathematical and Numerical Modeling in Porous Media: Applications in Geosciences, 1st edn. (CRC, Boca Raton, 2012)Google Scholar
  19. 19.
    S.E. Eisenstat, H.F. Walker, Globally convergent inexact Newton methods. SIAM J. Optim. 4(2), 393–422 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    K. Eppler, S. Schmidt, V. Schulz, C. Ilic, Preconditioning the pressure tracking in fluid dynamics by shape hessian information. J. Optim. Theory Appl. 141(3), 513–531 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    J.H. Ferziger, M. Perić, Computational Methods for Fluid Dynamics, vol. 3 (Springer, Berlin, 1996)CrossRefzbMATHGoogle Scholar
  22. 22.
    A. Fowler, Mathematical Geoscience. Interdisciplinary Applied Mathematics (Springer, London, 2011)CrossRefzbMATHGoogle Scholar
  23. 23.
    N. Gauger, A. Griewank, A. Hamdi, C. Kratzenstein, E. Oezkaya, T. Slawig, Automated extension of fixed point PDE solvers for optimal design with bounded retardation. Int. Ser. Numer. Math. 106, 99–122 (2012)Google Scholar
  24. 24.
    A. Griewank, Projected Hessians for preconditioning in one-step one-shot design optimization, in Large-Scale Nonlinear Optimization. Nonconvex Optimization and Its Applications, vol. 83 (Springer, New York, 2006), pp. 151–171Google Scholar
  25. 25.
    A. Griewank, C. Faure, Reduced functions, gradients and Hessians from fixed-point iterations for state equations. Numer. Algorithms 30(2), 113–139 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    A. Griewank, C. Faure, Piggyback differentiation and optimization, in Large-Scale PDE-Constrained Optimization (Santa Fe, NM, 2001). Lecture Notes in Computational Science and Engineering, vol. 30 (Springer, Berlin, 2003), pp. 148–164Google Scholar
  27. 27.
    A. Griewank, E. Özkaya, Quantifying retardation in simulation based optimization, in Optimization, Simulation, and Control. Springer Optimization and Its Application, vol. 76 (Springer, New York, 2013), pp. 79–96Google Scholar
  28. 28.
    A. Griewank, A. Walther, How up-to-date are low-rank updates? Rev. Investig. Oper. 25(2), 137–147 (2004)zbMATHMathSciNetGoogle Scholar
  29. 29.
    S. Günther, Simultane Optimierung unter PDE-Nebenbedingungen. Ein Vergleich zweier One-Shot-Methoden (Simultaneous optimization under PDE-constraints. A comparison of two One-shot methods). Diploma thesis, University of Trier, 2012Google Scholar
  30. 30.
    R.T. Haftka, Z. Gurdal, Elements of Structural Optimization. Contributions to Phenomenology (Kluwer Academic, Dordrecht, 1992)Google Scholar
  31. 31.
    Ad. Hamdi, A. Griewank, Properties of an augmented lagrangian for design optimization. Optim. Methods Softw. 25(4), 645–664 (2010)Google Scholar
  32. 32.
    S.B. Hazra, V. Schulz, J. Brezillon, N.R. Gauger, Aerodynamic shape optimization using simultaneous pseudo-timestepping. J. Comput. Phys. 204(1), 46–64 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    M. Heinkenschloss, L.N. Vicente, Analysis of inexact trust-region sqp algorithms. SIAM J. Optim. 12(2), 283–302 (2002)CrossRefMathSciNetGoogle Scholar
  34. 34.
    R. Herzog, E. Sachs, Preconditioned conjugate gradient method for optimal control problems with control and state constraints. SIAM J. Matrix Anal. Appl. 31(5), 2291–2317 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    M. Hinze, R. Pinnau, M. Ulbrich, S. Ulbrich, Optimization with PDE Constraints. Number 23 in Mathematical Modelling: Theory and Applications (Springer, Cham, 2009)Google Scholar
  36. 36.
    K. Ito, K. Kunisch, V. Schulz, I. Gherman, Approximate nullspace iterations for KKT systems. SIAM J. Matrix Anal. Appl. 31(4), 1835–1847 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    A. Jameson, Aerodynamic design via control theory, in Recent Advances in Computational Fluid Dynamics (Princeton, NJ, 1988). Lecture Notes in Engineering, vol. 43 (Springer, Berlin, 1989), pp. 377–401Google Scholar
  38. 38.
    C. Kanzow, Numerik Linearer Gleichungssysteme – Direkte und Iterative Verfahren, 1. aufl. edn. (Gabler Wissenschaftsverlage, Wiesbaden, 2004)Google Scholar
  39. 39.
    C.T. Kelley, Iterative Methods for Optimization. Frontiers in Applied Mathematics, vol. 18 (SIAM, Philadelphia, 1999)Google Scholar
  40. 40.
    C. Kratzenstein, T. Slawig, Simultaneous model spin-up and parameter identification with the one-shot method in a climate model example. Int. J. Optim. Control 3(2), 99–110 (2013)zbMATHMathSciNetGoogle Scholar
  41. 41.
    A. Lashanizadegan, Sh. Ayatollahi, M. Homayoni, Simultaneous heat and fluid flow in porous media: case study: steam injection for tertiary oil recovery. Chem. Eng. Commun. 195(5), 521–535 (2008)CrossRefGoogle Scholar
  42. 42.
    G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz, M. Ulbrich, S. Ulbrich, Constrained Optimization and Optimal Control for Partial Differential Equations. International Series of Numerical Mathematics (Springer, Basel, 2012)CrossRefzbMATHGoogle Scholar
  43. 43.
    A. Nemili, E. Özkaya, N.R. Gauger, A. Carnarius, F. Thiele, Optimal control of unsteady flows using discrete adjoints, AIAA-Paper 3720, 1–14 (2011)Google Scholar
  44. 44.
    J. Nocedal, S.J. Wright, Numerical Optimization. Springer Series in Operations Research and Financial Engineering, 2nd edn. (Springer, New York, 2006)Google Scholar
  45. 45.
    E. Özkaya, N.R. Gauger, Single-step one-shot aerodynamic shape optimization, in Optimal Control of Coupled Systems of Partial Differential Equations. International Series of Numerical Mathematics, vol. 158 (Birkhäuser Verlag, Basel, 2009), pp. 191–204Google Scholar
  46. 46.
    E. Özkaya, N.R. Gauger, Automatic transition from simulation to one-shot shape optimization with Navier-Stokes equations. GAMM-Mitt. 33(2), 133–147 (Springer-Verlag Berlin Heidelberg, 2010)Google Scholar
  47. 47.
    E. Özkaya, N. R. Gauger, An efficient one-shot algorithm for aerodynamic shape design, in New Results in Numerical and Experimental Fluid Mechanics VII (2010), pp. 35–42Google Scholar
  48. 48.
    P. Parekh, M.J. Follows, E.A. Boyle, Decoupling of iron and phosphate in the global ocean. Glob. Biogeochem. Cycles 19(2), GB2020 (2005)Google Scholar
  49. 49.
    O. Pironneau, On optimum profiles in Stokes flow. J. Fluid Mech. 59(01), 117–128 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  50. 50.
    S. Schmidt, V. Schulz, Impulse response approximations of discrete shape Hessians with application in CFD. SIAM J. Control Optim. 48(4), 2562–2580 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  51. 51.
    S. Schmidt, C. Ilic, V. Schulz, N. Gauger, Three-dimensional large-scale aerodynamic shape optimization based on shape calculus. AIAA J. 51(11), 2615–2627 (2013)CrossRefGoogle Scholar
  52. 52.
    J. Schöberl, W. Zulehner, Symmetric indefinite preconditioners for saddle point problems with applications to PDE-constrained optimization problems. SIAM J. Matrix Anal. Appl. 29(3), 752–773 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  53. 53.
    S. Ta’asan, ’One Shot’methods for optimal control of distributed parameter systems i: finite dimensional control. Technical report, DTIC Document, 1991Google Scholar
  54. 54.
    I.B. Tjoa, L.T. Biegler, Simultaneous solution and optimization strategies for parameter estimation of differential-algebraic equation systems. Ind. Eng. Chem. Res. 30(2), 376–385 (1991)CrossRefGoogle Scholar
  55. 55.
    F. Tröltzsch, Optimale Steuerung partieller Differentialgleichungen (Vieweg, Wiesbaden, 2005)CrossRefzbMATHGoogle Scholar
  56. 56.
    J.C. Ziems, S. Ulbrich, Adaptive multilevel inexact sqp methods for pde-constrained optimization. SIAM J. Optim. 21(1), 1–40 (2011)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Torsten Bosse
    • 2
  • Nicolas R. Gauger
    • 1
  • Andreas Griewank
    • 2
    Email author
  • Stefanie Günther
    • 1
  • Volker Schulz
    • 3
  1. 1.Department of Mathematics and Center for Computational Engineering ScienceRWTH Aachen UniversityAachenGermany
  2. 2.Department of MathematicsHumboldt-Universität zu BerlinBerlinGermany
  3. 3.Universität TrierTrierGermany

Personalised recommendations