Advertisement

Optimal Control of Elastoplastic Processes: Analysis, Algorithms, Numerical Analysis and Applications

  • Roland HerzogEmail author
  • Christian Meyer
  • Gerd Wachsmuth
Chapter
Part of the International Series of Numerical Mathematics book series (ISNM, volume 165)

Abstract

An optimal control problem is considered for the variational inequality representing the stress-based (dual) formulation of static elastoplasticity. The linear kinematic hardening model and the von Mises yield condition are used. The forward system is reformulated such that it involves the plastic multiplier and a complementarity condition. In order to derive necessary optimality conditions, a family of regularized optimal control problems is analyzed. C-stationarity type conditions are obtained by passing to the limit with the regularization. Numerical results are presented.

Keywords

Mathematical programs with complementarity constraints in function space Variational inequalities Elastoplasticity Regularization Optimality conditions 

Mathematics Subject Classification (2010)

Primary 49K20 70Q05 74C05 Secondary 90C33 35R45 

References

  1. 1.
    V. Barbu, Optimal Control of Variational Inequalities. Research Notes in Mathematics, vol. 100. (Pitman, Boston, 1984)Google Scholar
  2. 2.
    T. Betz, C. Meyer, Second-order sufficient optimality conditions for optimal control of static elastoplasticity with hardening. To appear in ESAIM J. Control Optim. Calc. Var.Google Scholar
  3. 3.
    J.C. de los Reyes, R. Herzog, C. Meyer, Optimal control of static elastoplasticity in primal formulation. Technical report SPP1253-151, Priority Program 1253, German Research Foundation, 2013Google Scholar
  4. 4.
    P. Grisvard, Elliptic Problems in Nonsmooth Domains (Pitman, Boston, 1985)zbMATHGoogle Scholar
  5. 5.
    K. Gröger, Initial value problems for elastoplastic and elastoviscoplastic systems, in Nonlinear Analysis, Function Spaces and Applications (Proceedings of Spring School, Horni Bradlo, 1978) (Teubner, Leipzig, 1979), pp. 95–127Google Scholar
  6. 6.
    K. Gröger, A W 1, p-estimate for solutions to mixed boundary value problems for second order elliptic differential equations. Mathematische Annalen 283, 679–687 (1989). doi:10.1007/BF01442860CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    R. Haller-Dintelmann, C. Meyer, J. Rehberg, A. Schiela, Hölder continuity and optimal control for nonsmooth elliptic problems. Appl. Math. Optim. 60(3), 397–428 (2009). doi:10.1007/s00245-009-9077-xCrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    W. Han, B.D. Reddy, Plasticity (Springer, New York, 1999)zbMATHGoogle Scholar
  9. 9.
    R. Herzog, C. Meyer, Optimal control of static plasticity with linear kinematic hardening. J. Appl. Math. Mech. 91(10), 777–794 (2011). doi:10.1002/zamm.200900378zbMATHMathSciNetGoogle Scholar
  10. 10.
    R. Herzog, C. Meyer, G. Wachsmuth, Integrability of displacement and stresses in linear and nonlinear elasticity with mixed boundary conditions. J. Math. Anal. Appl. 382(2), 802–813 (2011). doi:10.1016/j.jmaa.2011.04.074CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    R. Herzog, C. Meyer, G. Wachsmuth, Existence and regularity of the plastic multiplier in static and quasistatic plasticity. GAMM Rep. 34(1), 39–44 (2011). doi:10.1002/gamm.201110006CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    R. Herzog, C. Meyer, G. Wachsmuth, C-stationarity for optimal control of static plasticity with linear kinematic hardening. SIAM J. Control Optim. 50(5), 3052–3082 (2012). doi:10.1137/100809325CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    R. Herzog, C. Meyer, G. Wachsmuth, B- and strong stationarity for optimal control of static plasticity with hardening. SIAM J. Optim. 23(1), 321–352 (2013). doi:10.1137/110821147CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    M. Hintermüller, I. Kopacka, Mathematical programs with complementarity constraints in function space: C- and strong stationarity and a path-following algorithm. SIAM J. Optim. 20(2), 868–902 (2009). ISSN 1052-6234. doi:10.1137/080720681Google Scholar
  15. 15.
    T. Hoheisel, C. Kanzow, A. Schwartz, Theoretical and numerical comparison of relaxation methods for mathematical programs with complementarity constraints. Math. Program. 137(1–2), 257–288 (2013). doi:10.1007/s10107-011-0488-5CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    K. Ito, K. Kunisch, Optimal control of elliptic variational inequalities. Appl. Math. Optim. 41, 343–364 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    A. Logg, K.-A. Mardal, G. N. Wells et al., Automated Solution of Differential Equations by the Finite Element Method (Springer, Berlin/New York, 2012). ISBN 978-3-642-23098-1. doi:10.1007/978-3-642-23099-8CrossRefzbMATHGoogle Scholar
  18. 18.
    C. Meyer, O. Thoma, A priori finite element error analysis for optimal control of the obstacle problem. SIAM J. Numer. Anal. 51(1), 605–628 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    F. Mignot, Contrôle dans les inéquations variationelles elliptiques. J. Funct. Anal. 22(2), 130–185 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    F. Mignot, J.-P. Puel, Optimal control in some variational inequalities. SIAM J. Control Optim. 22(3), 466–476 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    H. Scheel, S. Scholtes, Mathematical programs with complementarity constraints: Stationarity, optimality, and sensitivity. Math. Oper. Res. 25(1), 1–22 (2000). doi:10.1287/moor.25.1.1.15213CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    A. Schiela, D. Wachsmuth, Convergence analysis of smoothing methods for optimal control of stationary variational inequalities with control constraints. ESAIM Math. Model. Numer. Anal. 47(3), 771–787 (2013). doi:10.1051/m2an/2012049CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    G. Wachsmuth, Optimal control of quasistatic plasticity – An MPCC in function space. PhD Thesis, Chemnitz University of Technology, 2011Google Scholar
  24. 24.
    G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening, Part I: existence and discretization in time. SIAM J. Control Optim. 50(5), 2836–2861 (2012). doi:10.1137/110839187zbMATHMathSciNetGoogle Scholar
  25. 25.
    G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening, Part II: regularization and differentiability. Technical report, TU Chemnitz, 2012Google Scholar
  26. 26.
    G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening, Part III: optimality conditions. Technical report, TU Chemnitz, 2012Google Scholar
  27. 27.
    G. Wachsmuth, Differentiability of implicit functions. J. Math. Anal. Appl. 414(1), 259–272 (2014), doi: 10.1016/j.jmaa.2014.01.007CrossRefMathSciNetGoogle Scholar
  28. 28.
    G. Wachsmuth, Strong stationarity for optimal control of the obstacle problem with control constraints. To appear SIAM J. Optim.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Roland Herzog
    • 1
    Email author
  • Christian Meyer
    • 2
  • Gerd Wachsmuth
    • 1
  1. 1.Faculty of MathematicsTechnische Universität ChemnitzChemnitzGermany
  2. 2.Faculty of MathematicsTechnical Universität DortmundDortmundGermany

Personalised recommendations