Skip to main content

Optimal Control of Elastoplastic Processes: Analysis, Algorithms, Numerical Analysis and Applications

  • Chapter
  • First Online:
Trends in PDE Constrained Optimization

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 165))

Abstract

An optimal control problem is considered for the variational inequality representing the stress-based (dual) formulation of static elastoplasticity. The linear kinematic hardening model and the von Mises yield condition are used. The forward system is reformulated such that it involves the plastic multiplier and a complementarity condition. In order to derive necessary optimality conditions, a family of regularized optimal control problems is analyzed. C-stationarity type conditions are obtained by passing to the limit with the regularization. Numerical results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Barbu, Optimal Control of Variational Inequalities. Research Notes in Mathematics, vol. 100. (Pitman, Boston, 1984)

    Google Scholar 

  2. T. Betz, C. Meyer, Second-order sufficient optimality conditions for optimal control of static elastoplasticity with hardening. To appear in ESAIM J. Control Optim. Calc. Var.

    Google Scholar 

  3. J.C. de los Reyes, R. Herzog, C. Meyer, Optimal control of static elastoplasticity in primal formulation. Technical report SPP1253-151, Priority Program 1253, German Research Foundation, 2013

    Google Scholar 

  4. P. Grisvard, Elliptic Problems in Nonsmooth Domains (Pitman, Boston, 1985)

    MATH  Google Scholar 

  5. K. Gröger, Initial value problems for elastoplastic and elastoviscoplastic systems, in Nonlinear Analysis, Function Spaces and Applications (Proceedings of Spring School, Horni Bradlo, 1978) (Teubner, Leipzig, 1979), pp. 95–127

    Google Scholar 

  6. K. Gröger, A W 1, p-estimate for solutions to mixed boundary value problems for second order elliptic differential equations. Mathematische Annalen 283, 679–687 (1989). doi:10.1007/BF01442860

    Article  MATH  MathSciNet  Google Scholar 

  7. R. Haller-Dintelmann, C. Meyer, J. Rehberg, A. Schiela, Hölder continuity and optimal control for nonsmooth elliptic problems. Appl. Math. Optim. 60(3), 397–428 (2009). doi:10.1007/s00245-009-9077-x

    Article  MATH  MathSciNet  Google Scholar 

  8. W. Han, B.D. Reddy, Plasticity (Springer, New York, 1999)

    MATH  Google Scholar 

  9. R. Herzog, C. Meyer, Optimal control of static plasticity with linear kinematic hardening. J. Appl. Math. Mech. 91(10), 777–794 (2011). doi:10.1002/zamm.200900378

    MATH  MathSciNet  Google Scholar 

  10. R. Herzog, C. Meyer, G. Wachsmuth, Integrability of displacement and stresses in linear and nonlinear elasticity with mixed boundary conditions. J. Math. Anal. Appl. 382(2), 802–813 (2011). doi:10.1016/j.jmaa.2011.04.074

    Article  MATH  MathSciNet  Google Scholar 

  11. R. Herzog, C. Meyer, G. Wachsmuth, Existence and regularity of the plastic multiplier in static and quasistatic plasticity. GAMM Rep. 34(1), 39–44 (2011). doi:10.1002/gamm.201110006

    Article  MATH  MathSciNet  Google Scholar 

  12. R. Herzog, C. Meyer, G. Wachsmuth, C-stationarity for optimal control of static plasticity with linear kinematic hardening. SIAM J. Control Optim. 50(5), 3052–3082 (2012). doi:10.1137/100809325

    Article  MATH  MathSciNet  Google Scholar 

  13. R. Herzog, C. Meyer, G. Wachsmuth, B- and strong stationarity for optimal control of static plasticity with hardening. SIAM J. Optim. 23(1), 321–352 (2013). doi:10.1137/110821147

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Hintermüller, I. Kopacka, Mathematical programs with complementarity constraints in function space: C- and strong stationarity and a path-following algorithm. SIAM J. Optim. 20(2), 868–902 (2009). ISSN 1052-6234. doi:10.1137/080720681

    Google Scholar 

  15. T. Hoheisel, C. Kanzow, A. Schwartz, Theoretical and numerical comparison of relaxation methods for mathematical programs with complementarity constraints. Math. Program. 137(1–2), 257–288 (2013). doi:10.1007/s10107-011-0488-5

    Article  MATH  MathSciNet  Google Scholar 

  16. K. Ito, K. Kunisch, Optimal control of elliptic variational inequalities. Appl. Math. Optim. 41, 343–364 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Logg, K.-A. Mardal, G. N. Wells et al., Automated Solution of Differential Equations by the Finite Element Method (Springer, Berlin/New York, 2012). ISBN 978-3-642-23098-1. doi:10.1007/978-3-642-23099-8

    Book  MATH  Google Scholar 

  18. C. Meyer, O. Thoma, A priori finite element error analysis for optimal control of the obstacle problem. SIAM J. Numer. Anal. 51(1), 605–628 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. F. Mignot, Contrôle dans les inéquations variationelles elliptiques. J. Funct. Anal. 22(2), 130–185 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  20. F. Mignot, J.-P. Puel, Optimal control in some variational inequalities. SIAM J. Control Optim. 22(3), 466–476 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  21. H. Scheel, S. Scholtes, Mathematical programs with complementarity constraints: Stationarity, optimality, and sensitivity. Math. Oper. Res. 25(1), 1–22 (2000). doi:10.1287/moor.25.1.1.15213

    Article  MATH  MathSciNet  Google Scholar 

  22. A. Schiela, D. Wachsmuth, Convergence analysis of smoothing methods for optimal control of stationary variational inequalities with control constraints. ESAIM Math. Model. Numer. Anal. 47(3), 771–787 (2013). doi:10.1051/m2an/2012049

    Article  MATH  MathSciNet  Google Scholar 

  23. G. Wachsmuth, Optimal control of quasistatic plasticity – An MPCC in function space. PhD Thesis, Chemnitz University of Technology, 2011

    Google Scholar 

  24. G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening, Part I: existence and discretization in time. SIAM J. Control Optim. 50(5), 2836–2861 (2012). doi:10.1137/110839187

    MATH  MathSciNet  Google Scholar 

  25. G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening, Part II: regularization and differentiability. Technical report, TU Chemnitz, 2012

    Google Scholar 

  26. G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening, Part III: optimality conditions. Technical report, TU Chemnitz, 2012

    Google Scholar 

  27. G. Wachsmuth, Differentiability of implicit functions. J. Math. Anal. Appl. 414(1), 259–272 (2014), doi: 10.1016/j.jmaa.2014.01.007

    Article  MathSciNet  Google Scholar 

  28. G. Wachsmuth, Strong stationarity for optimal control of the obstacle problem with control constraints. To appear SIAM J. Optim.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Herzog .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Herzog, R., Meyer, C., Wachsmuth, G. (2014). Optimal Control of Elastoplastic Processes: Analysis, Algorithms, Numerical Analysis and Applications. In: Leugering, G., et al. Trends in PDE Constrained Optimization. International Series of Numerical Mathematics, vol 165. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-05083-6_4

Download citation

Publish with us

Policies and ethics