Advertisement

Real-Time PDE Constrained Optimal Control of a Periodic Multicomponent Separation Process

  • Malte Behrens
  • Hans Georg Bock
  • Sebastian Engell
  • Phawitphorn Khobkhun
  • Andreas PotschkaEmail author
Chapter
Part of the International Series of Numerical Mathematics book series (ISNM, volume 165)

Abstract

We present a case study for a ternary separation process, for which structural and aleatoric model uncertainty must be taken into account. For the first time, we apply the control strategy of Modifier Adaptation to a PDE constrained optimization problem with challenging switched periodic boundary conditions in time. Numerically, real-time feasibility of the control scheme is possible by the use of a direct one-shot optimization method, whose efficiency is based on a two-grid Newton-Picard approach. We demonstrate real-time feasibility for a virtual plant with experimentally determined isotherm parameters under reasonable model-plant mismatch conditions. As a result, it is possible to drive the plant into its true optimum, i.e. to increase the productivity of the plant by 100 and 35 % in the two scenarios considered here.

Keywords

Real-time control PDE constrained optimization Time-periodic 

Mathematics Subject Classification (2010)

35Q93 90C90 92E20 

References

  1. 1.
    T. Ahmad, G. Guichon, Effect of the mobile phase composition on the adsorption behavior of tryptophan in reversed-phase liquid chromatography. J. Chromatograph. A 1114, 111–122 (2006)CrossRefGoogle Scholar
  2. 2.
    M. Behrens, S. Engell, Iterative set-point optimization of continuous annular electro-chromatography, in Proceedings of the 18th IFAC World Congress, 2011 – 28. 08 – 02.09.2011, Milano/Italy, Paper ID 3008, 2011Google Scholar
  3. 3.
    M. Behrens, Y. Yu, S. Engell, Parameter estimation and iterative set-point optimization of continuous annular electrochromatography, in Proceedings of the IEEE, International Conference on Industrial Technology (Athens, Greece, 2012), pp. 236–241, 2012Google Scholar
  4. 4.
    H.G. Bock, Numerical treatment of inverse problems in chemical reaction kinetics, in Modelling of Chemical Reaction Systems, ed. by K.H. Ebert, P. Deuflhard, W. Jäger. Springer Series in Chemical Physics, vol. 18 (Springer, Heidelberg, 1981), pp. 102–125Google Scholar
  5. 5.
    H.G. Bock, W. Egartner, W. Kappis, V. Schulz, Practical shape optimization for turbine and compressor blades by the use of PRSQP methods. Optim. Eng. 3(4), 395–414 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    H.G. Bock, K.J. Plitt, A multiple shooting algorithm for direct solution of optimal control problems, in Proceedings of the 9th IFAC World Congress, Budapest (Pergamon Press, 1984), pp. 242–247Google Scholar
  7. 7.
    H.G. Bock, A. Potschka, S. Sager, J.P. Schlöder, On the connection between forward and optimization problem in one-shot one-step methods, in Constrained Optimization and Optimal Control for Partial Differential Equations, ed. by G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz, M. Ulbrich, S. Ulbrich. International Series of Numerical Mathematics, vol. 160 (Springer, Basel, 2011), pp. 37–49Google Scholar
  8. 8.
    S. Engell, Feedback control for optimal process operation. J. Process Control 17, 203–219 (2007)CrossRefGoogle Scholar
  9. 9.
    W. Gao, S. Engell, Iterative set-point optimization of batch chromatography. Comput. Chem. Eng. 29, 1401–1410 (2005)CrossRefGoogle Scholar
  10. 10.
    A. Griewank, Projected Hessians for preconditioning in one-step one-shot design optimization, in Large-Scale Nonlinear Optimization. Nonconvex Optimization and Its Applications, vol. 83 (Springer, New York, 2006), pages 151–171Google Scholar
  11. 11.
    A. Griewank, A. Walther, Evaluating Derivatives, 2nd edn. (SIAM, Philadelphia, 2008)CrossRefzbMATHGoogle Scholar
  12. 12.
    C. Grossmann, G. Ströhlein, M. Morari, M. Morbidelli, Optimizing model predictive control of the chromatographic multi-column solvent gradient purification (MCSGP) process. J. Process Control 20, 618–629 (2010)CrossRefGoogle Scholar
  13. 13.
    S.B. Hazra, V. Schulz, J. Brezillon, N.R. Gauger, Aerodynamic shape optimization using simultaneous pseudo-timestepping. J. Comput. Phys. 204(1), 46–64 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    P. Khobkun, Iterative set-point optimization of the multi column solvent gradient purification process, Master’s thesis, TU Dortmund University, 2013Google Scholar
  15. 15.
    A. Küpper, Optimization, state estimation, and model predictive control of simulated moving bed processes, PhD thesis, TU Dortmund University, 2010Google Scholar
  16. 16.
    D.N. Lopez, Handling uncertainties in process optimization, PhD thesis, University of Valladolid, 2013Google Scholar
  17. 17.
    K. Lust, D. Roose, A. Spence, A. R. Champneys, An adaptive Newton-Picard algorithm with subspace iteration for computing periodic solutions. SIAM J. Sci. Comput. 19(4), 1188–1209 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    A. Marchetti, B. Chachuat, D. Bovin, A dual modifier approach for real-time optimization. J. Process Control 20, 1027–1037 (2010)CrossRefGoogle Scholar
  19. 19.
    A. Potschka, A direct method for the numerical solution of optimization problems with time-periodic PDE constraints, PhD thesis, Heidelberg University, 2011Google Scholar
  20. 20.
    A. Potschka, M.S. Mommer, J.P. Schlöder, H.G. Bock, Newton-Picard-based preconditioning for linear-quadratic optimization problems with time-periodic parabolic PDE constraints. SIAM J. Sci. Comp. 34(2), 1214–1239 (2012)CrossRefGoogle Scholar
  21. 21.
    H. Schmidt-Traub, Preperative Chromatography of Fine Chemicals and Pharmaceutical Agents (Wiley-VCH, Weinheim, 2012)Google Scholar
  22. 22.
    G. Ströhlein, L. Aumann, M. Mazzotti, M. Morbidelli, A continuous, counter-current multi-column chromatographic process incorporating modifier gradients for ternary separations. J. Chromatograph. A 1126, 338–346 (2006)CrossRefGoogle Scholar
  23. 23.
    P. Tatjewski, Iterative optimization set-point control – the basic principle redesigned, in Proceedings of the 15th IFAC World Congress, Barcelona, 2002Google Scholar
  24. 24.
    A. Toumi, S. Engell, Optimization and control of chromatography. Comput. Chem. Eng. 29, 1243–1252 (2005)CrossRefGoogle Scholar
  25. 25.
    J. Wloka, Partielle Differentialgleichungen: Sobolevräume u. Randwertaufgaben (B.G. Teubner, Stuttgart, 1982)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Malte Behrens
    • 1
  • Hans Georg Bock
    • 2
  • Sebastian Engell
    • 1
  • Phawitphorn Khobkhun
    • 1
  • Andreas Potschka
    • 2
    Email author
  1. 1.Department of Biochemical and Chemical EngineeringTU DortmundDortmundGermany
  2. 2.Interdisciplinary Center for Scientific ComputingHeidelberg UniversityHeidelbergGermany

Personalised recommendations