Skip to main content

Stabilization of Networked Hyperbolic Systems with Boundary Feedback

  • Chapter
  • First Online:
Book cover Trends in PDE Constrained Optimization

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 165))

Abstract

We summarize recent theoretical results as well as numerical results on the feedback stabilization of first order quasilinear hyperbolic systems (on networks). For the stabilization linear feedback controls are applied at the nodes of the network. This yields the existence and uniqueness of a C 1-solution of the hyperbolic system with small C 1-norm. For this solution an appropriate L 2-Lyapunov function decays exponentially in time. This implies the exponential stability of the system. A numerical discretization of the Lyapunov function is presented and a numerical analysis shows the expected exponential decay for a class of first-order discretization schemes. As an application for the theoretical results the stabilization of the gas flow in fan-shaped pipe networks with compressors is considered.

This work has been supported by DFG SPP 1253, DAAD 508846 and DAAD D/0811409 (Procope 2009/10).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.K. Banda, M. Herty, Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws. Math. Control Relat. Fields 3, 121–142 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. M.K. Banda, M. Herty, A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations. Netw. Heterog. Media 1, 295–314 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. M.K. Banda, M. Herty, A. Klar, Gas flow in pipeline networks. Netw. Heterog. Media 1, 41–56 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. G. Bastin, J.-M. Coron, B. d’Andréa-Novel, On Lyapunov stability of linearised Saint-Venant equations for a sloping channel. Netw. Heterog. Media 4, 177–187 (2009)

    Google Scholar 

  5. R.M. Colombo, G. Guerra, M. Herty, V. Schleper, Optimal control in networks of pipes and canals. SIAM J. Control Optim. 48, 2032–2050 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. J.-M. Coron, Control and Nonlinearity. Mathematical Surveys Monographs, vol. 136 (AMS, Providence, 2007)

    Google Scholar 

  7. J.-M. Coron, B. d’Andréa-Novel, G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws. IEEE Trans. Autom. Control 52, 2–11 (2007)

    Google Scholar 

  8. R. Datko, J. Lagnese, M.P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations. SIAM J. Control Optim. 24, 152–156 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Dick, Stabilization of the gas flow in networks: boundary feedback stabilization of quasilinear hyperbolic systems on networks. PhD thesis, University of Erlangen-Nuremberg, 2012

    Google Scholar 

  10. M. Dick, M. Gugat, M. Herty, S. Steffensen, On the relaxation approximation of boundary control of the isothermal Euler equations. Int. J. Control (2012), 1766–1778 85

    Google Scholar 

  11. M. Dick, M. Gugat, G. Leugering, Classical solutions and feedback stabilization for the gas flow in a sequence of pipes. Netw. Heterog. Media 5, 691–709 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Dick, M. Gugat, G. Leugering, A strict H 1-Lyapunov function and feedback stabilization for the isothermal Euler equations with friction. Numer. Algebra Control Optim. 1, 225–244 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. M. Dick, M. Gugat, G. Leugering, Feedback stabilization of quasilinear hyperbolic systems with varying delays, in Methods and Models in Automation and Robotics (MMAR), ed. by Z. Emirsajlow (IEEE Xplore, Piscataway, 2012), pp. 125–130

    Google Scholar 

  14. M. Garavello, B. Piccoli, Traffic Flow on Networks: Conservation Laws Models. AIMS Series on Applied Mathematics, vol. 1 (AIMS, Springfield, 2006)

    Google Scholar 

  15. M. Gugat, Optimal nodal control of networked hyperbolic systems: evaluation of derivatives. Adv. Model. Optim. 7, 9–37 (2005)

    MATH  MathSciNet  Google Scholar 

  16. M. Gugat, Boundary feedback stabilization by time delay for one-dimensional wave equations. IMA J. Math. Control Inf. 27, 189–203 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. M. Gugat, M. Dick, Time-delayed boundary feedback stabilization of the isothermal Euler equations with friction. Math. Control Relat. Fields 1, 469–491 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Gugat, M. Dick, G. Leugering, Gas flow in fan-shaped networks: classical solutions and feedback stabilization. SIAM J. Control Optim. 49, 2101–2117 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Gugat, M. Dick, G. Leugering, Stabilization of the gas flow in star-shaped networks by feedback controls with varying delay, in System Modeling and Optimization, ed. by D. Hömberg, F. Tröltzsch. IFIP AICT, vol. 391 (Springer, Berlin, 2013), pp. 255–265

    Google Scholar 

  20. M. Gugat, M. Herty, Existence of classical solutions and feedback stabilization for the flow in gas networks. ESAIM Control Optim. Calc. Var. 17, 28–51 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. M. Gugat, M. Herty, A. Klar, G. Leugering, V. Schleper, Well-posedness of networked hyperbolic systems of balance laws, in Constrained Optimization and Optimal Control for Partial Differential Equations, ed. by G. Leugering, S. Engell et al. ISNM, vol. 160 (Birkhäuser, Basel, 2012), pp. 123–146

    Google Scholar 

  22. M. Gugat, M. Herty, V. Schleper, Flow control in gas networks: exact controllability to a given demand. Math. Methods Appl. Sci. 34, 745–757 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. M. Gugat, G. Leugering, S. Tamasoiu, K. Wang, H 2-stabilization of the isothermal Euler equations: a Lyapunov function approach. Chin. Ann. Math. Ser. B. 33, 479–500 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. M. Gugat, M. Sigalotti, Stars of vibrating strings: switching boundary feedback stabilization. Netw. Heterog. Media 5, 299–314 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  25. M. Gugat, M. Tucsnak, An example for the switching delay feedback stabilization of an infinite dimensional system: the boundary stabilization of a string. Syst. Control Lett. 60, 226–233 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. M. Herty, Modeling, simulation and optimization of gas networks with compressors. Netw. Heterog. Media 2, 81–97 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. M. Herty, J. Mohring, V. Sachers, A new model for gas flow in pipe networks. Math. Methods Appl. Sci. 33, 845–855 (2010)

    MATH  MathSciNet  Google Scholar 

  28. M. Herty, L. Pareschi, S. Steffensen, Implicit-Explicit Runge-Kutta schemes for numerical discretization of optimal control problems. SIAM J. Numer. Anal. 51, 1875–1899 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  29. M. Herty, V. Sachers, Adjoint calculus for optimization of gas networks. Netw. Heterog. Media 2, 733–750 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  30. M. Herty, V. Schleper, Time discretizations for the numerical optimisation of hyperbolic problems. Appl. Math. Comput. 218, 183–194 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  31. G. Leugering, E.J.P.G. Schmidt, On the modelling and stabilization of flows in networks of open canals. SIAM J. Control Optim. 41, 164–180 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  32. T. Li, B. Rao, Z. Wang, Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions. Discret. Contin. Dyn. Syst. 28, 243–257 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  33. A. Marigo, Entropic solutions for irrigation networks. SIAM J. Appl. Math. 70, 1711–1735 (2009/2010)

    Google Scholar 

  34. S. Nicaise, J. Valein, E. Fridman, Stability of the heat and of the wave equations with boundary time-varying delays. Discret. Contin. Dyn. Syst. Ser. S 2, 559–581 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  35. A. Osiadacz, Simulation and Analysis of Gas Networks (Gulf Publishing Company, Houston, 1987)

    Google Scholar 

  36. A. Osiadacz, M. Chaczykowski, Comparison of isothermal and non-isothermal pipeline gas flow models. Chem. Eng. J. 81, 41–51 (2001)

    Article  Google Scholar 

  37. C. Prieur, F. Mazenc, ISS-Lyapunov functions for time-varying hyperbolic systems of balance laws. Math. Control Signals Syst. 24, 111–134 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  38. V. Schleper, Modeling, analysis and optimal control of gas pipeline networks. PhD thesis, TU Kaiserslautern, Verlag Dr. Hut, Munich, 2010

    Google Scholar 

  39. S. Steffensen, M. Herty, L. Pareschi, Numerical methods for the optimal control of scalar conservation laws, in System Modeling and Optimization, ed. by D. Hömberg, F. Tröltzsch. IFIP AICT, vol. 391 (Springer, Berlin, 2013), pp. 136–144

    Google Scholar 

  40. M.C. Steinbach, On PDE solution in transient optimization of gas networks. J. Comput. Appl. Math. 203, 345–361 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  41. J. Valein, E. Zuazua, Stabilization of the wave equation on 1-D networks. SIAM J. Control Optim. 48, 2771–2797 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  42. J.-M. Wang, B.-Z. Guo, M. Krstic, Wave equation stabilization by delays equal to even multiples of the wave propagation time. SIAM J. Control Optim. 49, 517–554 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  43. K. Wang, Exact boundary controllability for a kind of second-order quasilinear hyperbolic systems. Chin. Ann. Math. Ser. B 32, 803–822 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  44. K. Wang, Exact boundary controllability of nodal profile for 1-D quasilinear wave equations. Front. Math. China 6, 545–555 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  45. K. Wang, Global exact boundary controllability for 1-D quasilinear wave equations. Math. Methods Appl. Sci. 34, 315–324 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  46. Z. Wang, Exact controllability for nonautonomous first order quasilinear hyperbolic systems. Chin. Ann. Math. Ser. B 27, 643–656 (2006)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work has been supported by DFG GU376/7-1 and HE5386/8-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Dick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dick, M., Gugat, M., Herty, M., Leugering, G., Steffensen, S., Wang, K. (2014). Stabilization of Networked Hyperbolic Systems with Boundary Feedback. In: Leugering, G., et al. Trends in PDE Constrained Optimization. International Series of Numerical Mathematics, vol 165. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-05083-6_31

Download citation

Publish with us

Policies and ethics