Stabilization of Networked Hyperbolic Systems with Boundary Feedback

  • Markus DickEmail author
  • Martin Gugat
  • Michael Herty
  • Günter Leugering
  • Sonja Steffensen
  • Ke Wang
Part of the International Series of Numerical Mathematics book series (ISNM, volume 165)


We summarize recent theoretical results as well as numerical results on the feedback stabilization of first order quasilinear hyperbolic systems (on networks). For the stabilization linear feedback controls are applied at the nodes of the network. This yields the existence and uniqueness of a C 1-solution of the hyperbolic system with small C 1-norm. For this solution an appropriate L 2-Lyapunov function decays exponentially in time. This implies the exponential stability of the system. A numerical discretization of the Lyapunov function is presented and a numerical analysis shows the expected exponential decay for a class of first-order discretization schemes. As an application for the theoretical results the stabilization of the gas flow in fan-shaped pipe networks with compressors is considered.


Quasilinear hyperbolic system Feedback stabilization Networked system Boundary control Lyapunov function 

Mathematics Subject Classification (2010)

35L50 93C20 



This work has been supported by DFG GU376/7-1 and HE5386/8-1.


  1. 1.
    M.K. Banda, M. Herty, Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws. Math. Control Relat. Fields 3, 121–142 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    M.K. Banda, M. Herty, A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations. Netw. Heterog. Media 1, 295–314 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    M.K. Banda, M. Herty, A. Klar, Gas flow in pipeline networks. Netw. Heterog. Media 1, 41–56 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    G. Bastin, J.-M. Coron, B. d’Andréa-Novel, On Lyapunov stability of linearised Saint-Venant equations for a sloping channel. Netw. Heterog. Media 4, 177–187 (2009)Google Scholar
  5. 5.
    R.M. Colombo, G. Guerra, M. Herty, V. Schleper, Optimal control in networks of pipes and canals. SIAM J. Control Optim. 48, 2032–2050 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    J.-M. Coron, Control and Nonlinearity. Mathematical Surveys Monographs, vol. 136 (AMS, Providence, 2007)Google Scholar
  7. 7.
    J.-M. Coron, B. d’Andréa-Novel, G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws. IEEE Trans. Autom. Control 52, 2–11 (2007)Google Scholar
  8. 8.
    R. Datko, J. Lagnese, M.P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations. SIAM J. Control Optim. 24, 152–156 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    M. Dick, Stabilization of the gas flow in networks: boundary feedback stabilization of quasilinear hyperbolic systems on networks. PhD thesis, University of Erlangen-Nuremberg, 2012Google Scholar
  10. 10.
    M. Dick, M. Gugat, M. Herty, S. Steffensen, On the relaxation approximation of boundary control of the isothermal Euler equations. Int. J. Control (2012), 1766–1778 85Google Scholar
  11. 11.
    M. Dick, M. Gugat, G. Leugering, Classical solutions and feedback stabilization for the gas flow in a sequence of pipes. Netw. Heterog. Media 5, 691–709 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    M. Dick, M. Gugat, G. Leugering, A strict H 1-Lyapunov function and feedback stabilization for the isothermal Euler equations with friction. Numer. Algebra Control Optim. 1, 225–244 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    M. Dick, M. Gugat, G. Leugering, Feedback stabilization of quasilinear hyperbolic systems with varying delays, in Methods and Models in Automation and Robotics (MMAR), ed. by Z. Emirsajlow (IEEE Xplore, Piscataway, 2012), pp. 125–130Google Scholar
  14. 14.
    M. Garavello, B. Piccoli, Traffic Flow on Networks: Conservation Laws Models. AIMS Series on Applied Mathematics, vol. 1 (AIMS, Springfield, 2006)Google Scholar
  15. 15.
    M. Gugat, Optimal nodal control of networked hyperbolic systems: evaluation of derivatives. Adv. Model. Optim. 7, 9–37 (2005)zbMATHMathSciNetGoogle Scholar
  16. 16.
    M. Gugat, Boundary feedback stabilization by time delay for one-dimensional wave equations. IMA J. Math. Control Inf. 27, 189–203 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    M. Gugat, M. Dick, Time-delayed boundary feedback stabilization of the isothermal Euler equations with friction. Math. Control Relat. Fields 1, 469–491 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    M. Gugat, M. Dick, G. Leugering, Gas flow in fan-shaped networks: classical solutions and feedback stabilization. SIAM J. Control Optim. 49, 2101–2117 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    M. Gugat, M. Dick, G. Leugering, Stabilization of the gas flow in star-shaped networks by feedback controls with varying delay, in System Modeling and Optimization, ed. by D. Hömberg, F. Tröltzsch. IFIP AICT, vol. 391 (Springer, Berlin, 2013), pp. 255–265Google Scholar
  20. 20.
    M. Gugat, M. Herty, Existence of classical solutions and feedback stabilization for the flow in gas networks. ESAIM Control Optim. Calc. Var. 17, 28–51 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    M. Gugat, M. Herty, A. Klar, G. Leugering, V. Schleper, Well-posedness of networked hyperbolic systems of balance laws, in Constrained Optimization and Optimal Control for Partial Differential Equations, ed. by G. Leugering, S. Engell et al. ISNM, vol. 160 (Birkhäuser, Basel, 2012), pp. 123–146Google Scholar
  22. 22.
    M. Gugat, M. Herty, V. Schleper, Flow control in gas networks: exact controllability to a given demand. Math. Methods Appl. Sci. 34, 745–757 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    M. Gugat, G. Leugering, S. Tamasoiu, K. Wang, H 2-stabilization of the isothermal Euler equations: a Lyapunov function approach. Chin. Ann. Math. Ser. B. 33, 479–500 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    M. Gugat, M. Sigalotti, Stars of vibrating strings: switching boundary feedback stabilization. Netw. Heterog. Media 5, 299–314 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    M. Gugat, M. Tucsnak, An example for the switching delay feedback stabilization of an infinite dimensional system: the boundary stabilization of a string. Syst. Control Lett. 60, 226–233 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    M. Herty, Modeling, simulation and optimization of gas networks with compressors. Netw. Heterog. Media 2, 81–97 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    M. Herty, J. Mohring, V. Sachers, A new model for gas flow in pipe networks. Math. Methods Appl. Sci. 33, 845–855 (2010)zbMATHMathSciNetGoogle Scholar
  28. 28.
    M. Herty, L. Pareschi, S. Steffensen, Implicit-Explicit Runge-Kutta schemes for numerical discretization of optimal control problems. SIAM J. Numer. Anal. 51, 1875–1899 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    M. Herty, V. Sachers, Adjoint calculus for optimization of gas networks. Netw. Heterog. Media 2, 733–750 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    M. Herty, V. Schleper, Time discretizations for the numerical optimisation of hyperbolic problems. Appl. Math. Comput. 218, 183–194 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    G. Leugering, E.J.P.G. Schmidt, On the modelling and stabilization of flows in networks of open canals. SIAM J. Control Optim. 41, 164–180 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    T. Li, B. Rao, Z. Wang, Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions. Discret. Contin. Dyn. Syst. 28, 243–257 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    A. Marigo, Entropic solutions for irrigation networks. SIAM J. Appl. Math. 70, 1711–1735 (2009/2010)Google Scholar
  34. 34.
    S. Nicaise, J. Valein, E. Fridman, Stability of the heat and of the wave equations with boundary time-varying delays. Discret. Contin. Dyn. Syst. Ser. S 2, 559–581 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    A. Osiadacz, Simulation and Analysis of Gas Networks (Gulf Publishing Company, Houston, 1987)Google Scholar
  36. 36.
    A. Osiadacz, M. Chaczykowski, Comparison of isothermal and non-isothermal pipeline gas flow models. Chem. Eng. J. 81, 41–51 (2001)CrossRefGoogle Scholar
  37. 37.
    C. Prieur, F. Mazenc, ISS-Lyapunov functions for time-varying hyperbolic systems of balance laws. Math. Control Signals Syst. 24, 111–134 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    V. Schleper, Modeling, analysis and optimal control of gas pipeline networks. PhD thesis, TU Kaiserslautern, Verlag Dr. Hut, Munich, 2010Google Scholar
  39. 39.
    S. Steffensen, M. Herty, L. Pareschi, Numerical methods for the optimal control of scalar conservation laws, in System Modeling and Optimization, ed. by D. Hömberg, F. Tröltzsch. IFIP AICT, vol. 391 (Springer, Berlin, 2013), pp. 136–144Google Scholar
  40. 40.
    M.C. Steinbach, On PDE solution in transient optimization of gas networks. J. Comput. Appl. Math. 203, 345–361 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    J. Valein, E. Zuazua, Stabilization of the wave equation on 1-D networks. SIAM J. Control Optim. 48, 2771–2797 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    J.-M. Wang, B.-Z. Guo, M. Krstic, Wave equation stabilization by delays equal to even multiples of the wave propagation time. SIAM J. Control Optim. 49, 517–554 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    K. Wang, Exact boundary controllability for a kind of second-order quasilinear hyperbolic systems. Chin. Ann. Math. Ser. B 32, 803–822 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  44. 44.
    K. Wang, Exact boundary controllability of nodal profile for 1-D quasilinear wave equations. Front. Math. China 6, 545–555 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  45. 45.
    K. Wang, Global exact boundary controllability for 1-D quasilinear wave equations. Math. Methods Appl. Sci. 34, 315–324 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  46. 46.
    Z. Wang, Exact controllability for nonautonomous first order quasilinear hyperbolic systems. Chin. Ann. Math. Ser. B 27, 643–656 (2006)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Markus Dick
    • 1
    Email author
  • Martin Gugat
    • 1
  • Michael Herty
    • 2
  • Günter Leugering
    • 1
  • Sonja Steffensen
    • 2
  • Ke Wang
    • 3
  1. 1.Department of MathematicsUniversity of Erlangen-NurembergErlangenGermany
  2. 2.IGPM, Department of MathematicsRWTH Aachen UniversityAachenGermany
  3. 3.School of Mathematical SciencesFudan UniversityShanghaiChina

Personalised recommendations