Advertisement

Modeling, Analysis and Optimization of Particle Growth, Nucleation and Ripening by the Way of Nonlinear Hyperbolic Integro-Partial Differential Equations

  • Michael Gröschel
  • Wolfgang Peukert
  • Günter LeugeringEmail author
Chapter
Part of the International Series of Numerical Mathematics book series (ISNM, volume 165)

Abstract

We consider the processes of particle nucleation, growth, precipitation and ripening via modeling by nonlinear 1-D hyperbolic partial integro differential equations. The goal of this contribution is to provide a concise predictive forward modeling of the processes including appropriate goal functions and to establish a mathematical theory for the open-loop optimization in this context. Beyond deriving optimality conditions in the synthesis process, we present the application of a fully implicit method for Ostwald ripening of ZnO quantum dots which preserves its numeric stability even with respect to the inherent high sensitivities and wide disparity of scales. FIMOR represents an appropriate method that can be integrated to subordinate optimization studies which enables its future application in the context of continuous particle syntheses and microreaction technology (MRT).

Keywords

Nonlinear integro-partial differential equation Particle synthesis Particle growth Ostwald ripening Numerical simulation Optimization 

Mathematics Subject Classification (2010).

Primary 99Z99 Secondary 00A00 

Notes

Acknowledgements

The authors acknowledge the work of the PhD-candidates A. Keimer, L. Pflug, J. Semmler and M. Walther, in particular, with respect to the numerical solutions and R. Wagner for the studies on Si formation (experiment and population balance modeling), Doris Segets and Martin Hartig for the studies with ZnO quantum dots. The authors would like to thank the German Research Council (DFG) for their financial support within the priority programs SPP 1679 (PE427/25) and SPP 1253 (LE595/23), for support within the DFG-Cluster of Excellence “Engineering of Advanced Materials” (www.eam.uni-erlangen.de) at the University of Erlangen-Nuremberg as well as for funding within the framework of the Elite Network of Bavaria: Identification, Optimization and Control with Applications in Modern Technologies.

References

  1. 1.
    D. Armbruster, P. Degond, C. Ringhofer, A model for the dynamics of large queuing networks and supply chains. SIAM J. Appl. Math. 66, 896–920 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    D. Armbruster, D.E. Marthaler, C.A. Ringhofer, K.G. Kempf, T.C. Jo, A continuum model for a re-entrant factory. Oper. Res. 54, 933–950 (2006)CrossRefzbMATHGoogle Scholar
  3. 3.
    R.M. Colombo, M. Herty, M. Mercier, Control of the continuity equation with a non local flow. ESAIM Control Optim. Calc. Var. 17, 353–379 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    J.M. Coron, M. Kawski, Z. Wang, Analysis of a conservation law modeling a highly re-entrant manufacturing system. Discrete Contin. Dyn. Syst. Ser. B 14, 1337–1359 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    J. Gradl, Experimentelle und theoretische Untersuchungen der Bildungskinetik diffusions- sowie reaktionslimitierter Systeme am Beispiel der Nanopartikelfällung von Bariumsulfat und Zinkoxid (Cuvillier Verlag, Göttingen, 2010)Google Scholar
  6. 6.
    M. Gröschel, Optimization of particel synthesis, Ph.D. thesis, FAU Department of mathematics, 2013Google Scholar
  7. 7.
    M. Gugat, M. Herty, A. Klar, G. Leugering, Optimal control for traffic flow networks. J. Optim. Theory Appl. 126, 589–616 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    M. Herty, A. Klar, B. Piccoli, Existence of solutions for supply chain models based on partial differential equations. SIAM J. Math. Anal. 39, 160 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    C. Jagadish, S.J. Pearton (Eds.), Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties, and Applications, 1st edn. (Elsevier, Amsterdam/London, 2006)Google Scholar
  10. 10.
    I. Lifshitz, V. Slyozov, The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19, 35–50 (1961)CrossRefGoogle Scholar
  11. 11.
    A. Mersmann, Calculation of interfacial tensions. J. Cryst. Growth 102, 841–847 (1990)CrossRefGoogle Scholar
  12. 12.
    A. Mersmann, General prediction of statistically mean growth rates of a crystal collective. J. Cryst. Growth 147, 181–193 (1995)CrossRefGoogle Scholar
  13. 13.
    E.L. Petersen, M.W. Crofton, Measurements of high-temperature silane pyrolysis using SiH4 IR emission and SiH2 laser absorption. J. Phys. Chem. A 107, 10988–10995 (2003)CrossRefGoogle Scholar
  14. 14.
    D. Ramkrishna, Population Balances: Theory and Applications to Particulate Systems in Engineering (Elsevier, Burlington, 2000)Google Scholar
  15. 15.
    D. Segets, M.A.J. Hartig, J. Gradl, W. Peukert, A population balance model of quantum dot formation: oriented growth and ripening of ZnO. Chem. Eng. Sci. 70, 4–13 (2012)CrossRefGoogle Scholar
  16. 16.
    D.H. Segets, J. Gradl, R.K. Taylor, V. Vassilev, W. Peukert, N.S. Distribution, Analysis of optical absorbance spectra for the determination of ZnO nanoparticle size distribution, solubility, and surface energy. ACS nano 3, 1703–1710 (2009)CrossRefGoogle Scholar
  17. 17.
    D.H. Segets, L.M. Tomalino, J. Gradl, W. Peukert, Real-time monitoring of the nucleation and growth of ZnO nanoparticles using an optical hyper-rayleigh scattering method. J. Phys. Chem. C 113, 11995–12001 (2009)CrossRefGoogle Scholar
  18. 18.
    P. Shang, Z. Wang, Analysis and control of a scalar conservation law modeling a highly re-entrant manufacturing system. J. Diff. Equ. 250, 949–982 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    D.V. Talapin, A.L. Rogach, M. Haase, H. Weller, Evolution of an ensemble of nanoparticles in a colloidal solution: theoretical study. J. Phys. Chem. B 105, 12278–12285 (2001)CrossRefGoogle Scholar
  20. 20.
    R. Viswanatha, S. Sapra, B. Satpati, P.V. Satyam, B.N. Dev, D.D. Sarma, Understanding the quantum size effects in ZnO nanocrystals. J. Mater. Chem. 14, 661 (2004)CrossRefGoogle Scholar
  21. 21.
    C. Wagner, Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung). Zeitschrift für Elektrochemie Berichte der Bunsengesellschaft für physikalische Chemie 65, 581–591 (1961)Google Scholar
  22. 22.
    Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications. J. Phys. Condens. Matter 16, 829–858 (2004)CrossRefGoogle Scholar
  23. 23.
    M. Wulkow, Modeling and simulation of crystallization processes using parsival. Chem. Eng. Sci. 56, 2575–2588 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Michael Gröschel
    • 1
  • Wolfgang Peukert
    • 2
  • Günter Leugering
    • 1
    Email author
  1. 1.Institute of Applied Mathematics 2Friedrich-Alexander University Erlangen-NürnbergErlangenGermany
  2. 2.Institute of Particle TechnologyFriedrich-Alexander University Erlangen-NürnbergErlangenGermany

Personalised recommendations