Optimal Control of Allen-Cahn Systems

  • Luise BlankEmail author
  • M. Hassan Farshbaf-Shaker
  • Claudia Hecht
  • Josef Michl
  • Christoph Rupprecht
Part of the International Series of Numerical Mathematics book series (ISNM, volume 165)


Optimization problems governed by Allen-Cahn systems including elastic effects are formulated and first-order necessary optimality conditions are presented. Smooth as well as obstacle potentials are considered, where the latter leads to an MPEC. Numerically, for smooth potential the problem is solved efficiently by the Trust-Region-Newton-Steihaug-cg method. In case of an obstacle potential first numerical results are presented.


Allen-Cahn system Parabolic obstacle problems Linear elasticity Mathematical programs with complementarity constraints Optimality conditions Trust-Region-Newton method 

Mathematics Subject Classification (2010)

Primary 49J40 Secondary 49K20 49J20 49M15 74P99 


  1. 1.
    J.W. Barrett, R. Nürnberg, V. Styles, Finite element approximation of a phase field model for void electromigration. SIAM J. Numer. Anal. 42(2), 738–772 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    M. Bergounioux, Optimal control of an obstacle problem. Appl. Math. Optim. 36(2), 147–172 (1997)CrossRefMathSciNetGoogle Scholar
  3. 3.
    L. Blank, H. Garcke, L. Sarbu, V. Styles, Nonlocal Allen-Cahn systems: analysis and a primal-dual active set method. IMA J. Numer. Anal. 33(4), 1126–1155 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    T. Blesgen, U. Weikard, Multi-component Allen-Cahn equation for elastically stressed solids. Electron. J. Differ. Equ. 2005(89), 1–17 (2005)MathSciNetGoogle Scholar
  5. 5.
    J.F. Blowey, C.M. Elliott, The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy Part I: mathematical analysis. Eur. J. Appl. Math. 2, 233–280 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    A. Bossavit, A. Damlamian, Free Boundary Problems: Applications and Theory, vol. 1 (Pitman Advanced Publishing Program, London, 1985)zbMATHGoogle Scholar
  7. 7.
    P.G. Ciarlet, Three-Dimensional Elasticity. Number 1 in Studies in Mathematics and Its Applications (Elsevier, Amsterdam, 1988)Google Scholar
  8. 8.
    A.R. Conn, N.I.M. Gould, P.L. Toint, Trust Region Methods (SIAM, Philadelphia, 2000)CrossRefzbMATHGoogle Scholar
  9. 9.
    M.H. Farshbaf-Shaker, A relaxation approach to vector-valued Allen-Cahn MPEC problems, Universität Regensburg, Mathematik, (Preprint-SPP1253-127-2, 2011)Google Scholar
  10. 10.
    M.H. Farshbaf-Shaker, A penalty approach to optimal control of Allen-Cahn variational inequalities: MPEC-view. Numer. Funct. Anal. Optim. 33(11), 1321–1349 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    M.H. Farshbaf-Shaker, C. Hecht, Optimal control of elastic vector-valued Allen-Cahn variational inequalities, (Preprintreihe der Fakultät Mathematik 16/2013, Universität Regensburg, 2013)Google Scholar
  12. 12.
    H. Garcke, On Mathematical Models for Phase Separation in Elastically Stressed Solids, Habilitation thesis, University Bonn, 2000Google Scholar
  13. 13.
    H. Garcke, B. Nestler, A mathematical model for grain growth in thin metallic films. Math. Models Methods Appl. Sci. 10(06), 895–921 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    F. Haußer, S. Rasche, A. Voigt, The influence of electric fields on nanostructures – simulation and control. Math. Comput. Simul. 80(7), 1449–1457 (2010)CrossRefzbMATHGoogle Scholar
  15. 15.
    C. Hecht, Existence theory and necessary optimality conditions for the control of the elastic Allen-Cahn system, Diplomarbeit, Universität Regensburg, 2011Google Scholar
  16. 16.
    M. Hintermüller, I. Kopacka, Mathematical programs with complementarity constraints in function space: C- and strong stationarity and a path-following algorithm. SIAM J. Optim. 20(2), 868–902 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    M. Hintermüller, D. Wegner, Distributed optimal control of the Cahn-Hilliard system including the case of a double-obstacle homogeneous free energy density. SIAM J. Control Optim. 50(1), 388–418 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    S. Kurcyusz, J. Zowe, Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5(1), 49–62 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    A. Logg, K. Mardal, G. Wells et al., Automated Solution of Differential Equations by the Finite Element Method (Springer-Verlag Berlin Heidelberg, 2012).
  20. 20.
    D. Meidner, B. Vexler, Adaptive space-time finite element methods for parabolic optimization problems. SIAM J. Control Optim. 46(1), 116–142 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    J. Michl, Optimale Steuerung von Phasengrenzen mit Optimierungsmethoden für MPECs. Diplomarbeit, Universität Regensburg, 2013Google Scholar
  22. 22.
    T. Ohtsuka, K. Shirakawa, N. Yamazaki, Optimal control problem for Allen-Cahn type equation associated with total variation energy. Discret. Contin. Dyn. Syst. Ser. S 5(1), 159–181 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    C. Rupprecht, Numerische Lösung optimaler Steuerung der Allen-Cahn Gleichung inklusive Adaptivität, Diplomarbeit, Universität Regensburg, 2011Google Scholar
  24. 24.
    S. Scholtes, Convergence properties of a regularization scheme for mathematical programs with complementarity constraints. SIAM J. Optim. 11(4), 918–936 (2001)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Luise Blank
    • 1
    Email author
  • M. Hassan Farshbaf-Shaker
    • 2
  • Claudia Hecht
    • 1
  • Josef Michl
    • 3
  • Christoph Rupprecht
    • 1
  1. 1.Fakultät für MathematikUniversität RegensburgRegensburgGermany
  2. 2.Weierstraß-Institut, Mohrenstr. 39BerlinGermany
  3. 3.Institut für Theoretische PhysikUniversität RegensburgRegensburgGermany

Personalised recommendations