Advertisement

Optimal Treatment Planning in Radiotherapy Based on Boltzmann Transport Equations

  • Richard C. BarnardEmail author
  • Martin Frank
  • Michael Herty
Chapter
Part of the International Series of Numerical Mathematics book series (ISNM, volume 165)

Abstract

We look at the optimization of radiotherapy treatment planning. By using a deterministic model of dose deposition in tissue derived from the Boltzmann transport equations, we can improve on the accuracy of existing models near tissue inhomogeneities while also making use of adjoint calculus for developing necessary conditions for optimality. We describe the relevant model and consider the planning problem in an optimal control framework. Two versions of the problem are discussed, optimality conditions are derived, and numerical methods are described. Numerical examples are presented.

Keywords

Kinetic equation Optimal control Radiotherapy 

Mathematics Subject Classification (2010)

35Q20 49J20 

References

  1. 1.
    R. Barnard, M. Frank, M. Herty, Optimal radiotherapy treatment planning using minimum entropy models. Appl. Math. Comput. 219(5), 2668–2679 (2012)CrossRefMathSciNetGoogle Scholar
  2. 2.
    R. Barnard, M. Frank, M. Herty, Treatment planning optimization for radiotherapy. Proc. Appl. Math. Mech. 13(1), 339–340 (2013)CrossRefGoogle Scholar
  3. 3.
    C. Börgers, Complexity of Monte Carlo and deterministic dose-calculation methods. Phys. Med. Biol. 43, 517–528 (1998)CrossRefGoogle Scholar
  4. 4.
    C. Börgers, The radiation therapy planning problem, in Computational Radiology and Imaging (Minneapolis, MN, 1997), ed. by C. Börgers, F. Natterer. Volume 110 of IMA Volumes in Mathematics and its Applications (Springer, New York, 1999), pp. 1–16Google Scholar
  5. 5.
    T. Brunner, Forms of approximate radiation transport. Sandia Report, 2002Google Scholar
  6. 6.
    M.K. Bucci, A. Bevan, M. Roach, Advances in radiation therapy: conventional to 3d, to imrt, to 4d, and beyond. CA: Cancer J. Clin. 55(2), 117–134 (2005)Google Scholar
  7. 7.
    R.G. Dale, The application of the linear-quadratic dose-effect equation to fractionated and protracted radiotherapy. Br. J. Radiol. 58(690), 515–528 (1985)CrossRefGoogle Scholar
  8. 8.
    G. Delaney, S. Jacob, C. Featherstone, M. Barton, The role of radiotherapy in cancer treatment. Cancer 104(6), 1129–1137 (2005)CrossRefGoogle Scholar
  9. 9.
    B. Dubroca, J.-L. Feugeas, Étude théorique et numérique d’une hiérarchie de modèles aux moments pout le transfert radiatif. Analyse Numérique 329(1), 915–920 (1999)zbMATHMathSciNetGoogle Scholar
  10. 10.
    R. Duclous, B. Dubroca, M. Frank, A deterministic partial differential equation model for dose calculation in electron radiotherapy. Phys. Med. Biol. 55(13), 3843–3857 (2010)CrossRefGoogle Scholar
  11. 11.
    B.C. Ferreira, P. Mavroidis, M. Adamus-Górka, R. Svensson, B.K. Lind, The impact of different dose-response parameters on biologically optimized imrt in breast cancer. Phys. Med. Biol. 53(10), 2733 (2008)Google Scholar
  12. 12.
    M. Frank, Approximate models for radiative transfer. Bull. Inst. Math. Acad. Sinica (New Series) 2(2), 409–432 (2007)Google Scholar
  13. 13.
    M. Frank, M. Herty, M. Schäfer, Optimal treatment planning in radiotherapy based on Boltzmann transport calculations. Math. Models Methods Appl. Sci. 18(4), 573–592 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    M. Frank, M. Herty, A.N. Sandjo, Optimal radiotherapy treatment planning governed by kinetic equations. Math. Models Methods Appl. Sci. 20(4), 661–678 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    M. Frank, C. Berthon, C. Sarazin, R. Turpault, Numerical methods for balance laws with space dependent flux: application to radiotherapy dose calculation. Commun. Comput. Phys. 10(5), 1184–1210 (2011)Google Scholar
  16. 16.
    M. Frank, M. Herty, M. Hinze, Instantaneous closed loop control of the radiative transfer equations with applications in radiotherapy. ZAMM Z. Angew. Math. Mech. 92(1), 8–24 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    H. Hensel, R. Iza-Teran, N. Siedow, Deterministic model for dose calculation in photon radiotherapy. Phys. Med. Biol. 51(3), 675 (2006)Google Scholar
  18. 18.
    M. Herty, A.N. Sandjo, On optimal treatment planning in radiotherapy governed by transport equations. Math. Models Methods Appl. Sci. 21(2):345–359 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    M. Herty, C. Jörres, A.N. Sandjo, Optimization of a model Fokker-Planck equation. Kinet. Relat. Models 5(3), 485–503 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    C.R. King, T.A. DiPetrillo, D.E. Wazer, Optimal radiotherapy for prostate cancer: predictions for conventional external beam, imrt, and brachytherapy from radiobiologic models. Int. J. Radiat. Oncol. Biol. Phys. 46(1), 165–172 (2000)CrossRefGoogle Scholar
  21. 21.
    T. Krieger, O.A Sauer, Monte carlo- versus pencil-beam-/collapsed-cone-dose calculation in a heterogeneous multi-layer phantom. Phys. Med. Biol. 50(5), 859–868 (2005)Google Scholar
  22. 22.
    E.W. Larsen, M.M. Miften, B.A. Fraass, I.A.D. Bruinvis, Electron dose calculations using the method of moments. Med. Phys. 24(1), 111–125 (1997)CrossRefGoogle Scholar
  23. 23.
    G.C. Pomraning, The Fokker-Planck operator as an asymptotic limit. Math. Models Methods Appl. Sci. 2(1):21–36 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    U. Ringborg, D. Bergqvist, B. Brorsson, E. Cavallin-ståhl, J. Ceberg, N. Einhorn, J.erik Frödin, J. Järhult, G. Lamnevik, C. Lindholm, B. Littbrand, A. Norlund, U. Nylén, M. Rosén, H. Svensson, T.R. Möller, The swedish council on technology assessment in health care (sbu) systematic overview of radiotherapy for cancer including a prospective survey of radiotherapy practice in sweden 2001–summary and conclusions. Acta Oncologica 42(5–6), 357–365 (2003)Google Scholar
  25. 25.
    D.M. Shepard, M.C. Ferris, G.H. Olivera, T.R. Mackie, Optimizing the delivery of radiation therapy to cancer patients. SIAM Rev. 41, 721–744 (1999)CrossRefzbMATHGoogle Scholar
  26. 26.
    M. Sikora, J. Muzik, M. Söhn, M. Weinmann, M. Alber, Monte carlo vs. pencil beam based optimization of stereotactic lung imrt. Radiat. Oncol. 4(64) (2009)Google Scholar
  27. 27.
    C.P. South, M. Partridge, P.M. Evans, A theoretical framework for prescribing radiotherapy dose distributions using patient-specific biological information. Med. Phys. 35(10), 4599–4611 (2008)CrossRefGoogle Scholar
  28. 28.
    G.G. Steel, J.D. Down, J.H. Peacock, T.C. Stephens, Dose-rate effects and the repair of radiation damage. Radiother. Oncol. 5(4), 321–331 (1986)CrossRefGoogle Scholar
  29. 29.
    G.G. Steel, J.M. Deacon, G.M. Duchesne, A. Horwich, L.R. Kelland, J.H. Peacock, The dose-rate effect in human tumour cells. Radiother. Oncol. 9(4), 299–310 (1987)CrossRefGoogle Scholar
  30. 30.
    J. Tervo, P. Kolmonen, Inverse radiotherapy treatment planning model applying boltzmann-transport equation. Math. Models. Methods. Appl. Sci. 12, 109–141 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    J. Tervo, P. Kolmonen, M. Vauhkonen, L.M. Heikkinen, J.P. Kaipio, A finite-element model of electron transport in radiation therapy and related inverse problem. Inv. Probl. 15, 1345–1361 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    J. Tervo, M. Vauhkonen, E. Boman, Optimal control model for radiation therapy inverse planning applying the Boltzmann transport equation. Lin. Alg. Appl. 428, 1230–1249 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    M. Treutwein, L. Bogner, Elektronenfelder in der klinischen anwendung. Strahlentherapie und Onkologie 183, 454–458 (2007). doi:10.1007/s00066-007-1687-0CrossRefGoogle Scholar
  34. 34.
    F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods, and Applications. Volume 112 of Graduate Studies in Mathematics (American Mathematical Society, Providence, 2010)Google Scholar
  35. 35.
    S. Webb, Optimum parameters in a model for tumour control probability including interpatient heterogeneity. Phys. Med. Biol. 39(11), 1895–1914 (1994)CrossRefGoogle Scholar
  36. 36.
    World Health Organization, Radiotherapy Risk Profile (WHO, Geneva, 2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Richard C. Barnard
    • 1
    Email author
  • Martin Frank
    • 2
  • Michael Herty
    • 3
  1. 1.Institute for Mathematics and Scientific ComputingUniversity of GrazGrazAustria
  2. 2.MATHCCES, Department of MathematicsRWTH Aachen UniversityAachenGermany
  3. 3.IGPM, Department of MathematicsRWTH Aachen UniversityAachenGermany

Personalised recommendations