Skip to main content

Optimal Treatment Planning in Radiotherapy Based on Boltzmann Transport Equations

  • Chapter
  • First Online:
Trends in PDE Constrained Optimization

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 165))

  • 1790 Accesses

Abstract

We look at the optimization of radiotherapy treatment planning. By using a deterministic model of dose deposition in tissue derived from the Boltzmann transport equations, we can improve on the accuracy of existing models near tissue inhomogeneities while also making use of adjoint calculus for developing necessary conditions for optimality. We describe the relevant model and consider the planning problem in an optimal control framework. Two versions of the problem are discussed, optimality conditions are derived, and numerical methods are described. Numerical examples are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.nlm.nih.gov/research/visible/

References

  1. R. Barnard, M. Frank, M. Herty, Optimal radiotherapy treatment planning using minimum entropy models. Appl. Math. Comput. 219(5), 2668–2679 (2012)

    Article  MathSciNet  Google Scholar 

  2. R. Barnard, M. Frank, M. Herty, Treatment planning optimization for radiotherapy. Proc. Appl. Math. Mech. 13(1), 339–340 (2013)

    Article  Google Scholar 

  3. C. Börgers, Complexity of Monte Carlo and deterministic dose-calculation methods. Phys. Med. Biol. 43, 517–528 (1998)

    Article  Google Scholar 

  4. C. Börgers, The radiation therapy planning problem, in Computational Radiology and Imaging (Minneapolis, MN, 1997), ed. by C. Börgers, F. Natterer. Volume 110 of IMA Volumes in Mathematics and its Applications (Springer, New York, 1999), pp. 1–16

    Google Scholar 

  5. T. Brunner, Forms of approximate radiation transport. Sandia Report, 2002

    Google Scholar 

  6. M.K. Bucci, A. Bevan, M. Roach, Advances in radiation therapy: conventional to 3d, to imrt, to 4d, and beyond. CA: Cancer J. Clin. 55(2), 117–134 (2005)

    Google Scholar 

  7. R.G. Dale, The application of the linear-quadratic dose-effect equation to fractionated and protracted radiotherapy. Br. J. Radiol. 58(690), 515–528 (1985)

    Article  Google Scholar 

  8. G. Delaney, S. Jacob, C. Featherstone, M. Barton, The role of radiotherapy in cancer treatment. Cancer 104(6), 1129–1137 (2005)

    Article  Google Scholar 

  9. B. Dubroca, J.-L. Feugeas, Étude théorique et numérique d’une hiérarchie de modèles aux moments pout le transfert radiatif. Analyse Numérique 329(1), 915–920 (1999)

    MATH  MathSciNet  Google Scholar 

  10. R. Duclous, B. Dubroca, M. Frank, A deterministic partial differential equation model for dose calculation in electron radiotherapy. Phys. Med. Biol. 55(13), 3843–3857 (2010)

    Article  Google Scholar 

  11. B.C. Ferreira, P. Mavroidis, M. Adamus-GĂłrka, R. Svensson, B.K. Lind, The impact of different dose-response parameters on biologically optimized imrt in breast cancer. Phys. Med. Biol. 53(10), 2733 (2008)

    Google Scholar 

  12. M. Frank, Approximate models for radiative transfer. Bull. Inst. Math. Acad. Sinica (New Series) 2(2), 409–432 (2007)

    Google Scholar 

  13. M. Frank, M. Herty, M. Schäfer, Optimal treatment planning in radiotherapy based on Boltzmann transport calculations. Math. Models Methods Appl. Sci. 18(4), 573–592 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Frank, M. Herty, A.N. Sandjo, Optimal radiotherapy treatment planning governed by kinetic equations. Math. Models Methods Appl. Sci. 20(4), 661–678 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Frank, C. Berthon, C. Sarazin, R. Turpault, Numerical methods for balance laws with space dependent flux: application to radiotherapy dose calculation. Commun. Comput. Phys. 10(5), 1184–1210 (2011)

    Google Scholar 

  16. M. Frank, M. Herty, M. Hinze, Instantaneous closed loop control of the radiative transfer equations with applications in radiotherapy. ZAMM Z. Angew. Math. Mech. 92(1), 8–24 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. H. Hensel, R. Iza-Teran, N. Siedow, Deterministic model for dose calculation in photon radiotherapy. Phys. Med. Biol. 51(3), 675 (2006)

    Google Scholar 

  18. M. Herty, A.N. Sandjo, On optimal treatment planning in radiotherapy governed by transport equations. Math. Models Methods Appl. Sci. 21(2):345–359 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Herty, C. Jörres, A.N. Sandjo, Optimization of a model Fokker-Planck equation. Kinet. Relat. Models 5(3), 485–503 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. C.R. King, T.A. DiPetrillo, D.E. Wazer, Optimal radiotherapy for prostate cancer: predictions for conventional external beam, imrt, and brachytherapy from radiobiologic models. Int. J. Radiat. Oncol. Biol. Phys. 46(1), 165–172 (2000)

    Article  Google Scholar 

  21. T. Krieger, O.A Sauer, Monte carlo- versus pencil-beam-/collapsed-cone-dose calculation in a heterogeneous multi-layer phantom. Phys. Med. Biol. 50(5), 859–868 (2005)

    Google Scholar 

  22. E.W. Larsen, M.M. Miften, B.A. Fraass, I.A.D. Bruinvis, Electron dose calculations using the method of moments. Med. Phys. 24(1), 111–125 (1997)

    Article  Google Scholar 

  23. G.C. Pomraning, The Fokker-Planck operator as an asymptotic limit. Math. Models Methods Appl. Sci. 2(1):21–36 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  24. U. Ringborg, D. Bergqvist, B. Brorsson, E. Cavallin-ståhl, J. Ceberg, N. Einhorn, J.erik Frödin, J. Järhult, G. Lamnevik, C. Lindholm, B. Littbrand, A. Norlund, U. Nylén, M. Rosén, H. Svensson, T.R. Möller, The swedish council on technology assessment in health care (sbu) systematic overview of radiotherapy for cancer including a prospective survey of radiotherapy practice in sweden 2001–summary and conclusions. Acta Oncologica 42(5–6), 357–365 (2003)

    Google Scholar 

  25. D.M. Shepard, M.C. Ferris, G.H. Olivera, T.R. Mackie, Optimizing the delivery of radiation therapy to cancer patients. SIAM Rev. 41, 721–744 (1999)

    Article  MATH  Google Scholar 

  26. M. Sikora, J. Muzik, M. Söhn, M. Weinmann, M. Alber, Monte carlo vs. pencil beam based optimization of stereotactic lung imrt. Radiat. Oncol. 4(64) (2009)

    Google Scholar 

  27. C.P. South, M. Partridge, P.M. Evans, A theoretical framework for prescribing radiotherapy dose distributions using patient-specific biological information. Med. Phys. 35(10), 4599–4611 (2008)

    Article  Google Scholar 

  28. G.G. Steel, J.D. Down, J.H. Peacock, T.C. Stephens, Dose-rate effects and the repair of radiation damage. Radiother. Oncol. 5(4), 321–331 (1986)

    Article  Google Scholar 

  29. G.G. Steel, J.M. Deacon, G.M. Duchesne, A. Horwich, L.R. Kelland, J.H. Peacock, The dose-rate effect in human tumour cells. Radiother. Oncol. 9(4), 299–310 (1987)

    Article  Google Scholar 

  30. J. Tervo, P. Kolmonen, Inverse radiotherapy treatment planning model applying boltzmann-transport equation. Math. Models. Methods. Appl. Sci. 12, 109–141 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  31. J. Tervo, P. Kolmonen, M. Vauhkonen, L.M. Heikkinen, J.P. Kaipio, A finite-element model of electron transport in radiation therapy and related inverse problem. Inv. Probl. 15, 1345–1361 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  32. J. Tervo, M. Vauhkonen, E. Boman, Optimal control model for radiation therapy inverse planning applying the Boltzmann transport equation. Lin. Alg. Appl. 428, 1230–1249 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  33. M. Treutwein, L. Bogner, Elektronenfelder in der klinischen anwendung. Strahlentherapie und Onkologie 183, 454–458 (2007). doi:10.1007/s00066-007-1687-0

    Article  Google Scholar 

  34. F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods, and Applications. Volume 112 of Graduate Studies in Mathematics (American Mathematical Society, Providence, 2010)

    Google Scholar 

  35. S. Webb, Optimum parameters in a model for tumour control probability including interpatient heterogeneity. Phys. Med. Biol. 39(11), 1895–1914 (1994)

    Article  Google Scholar 

  36. World Health Organization, Radiotherapy Risk Profile (WHO, Geneva, 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard C. Barnard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barnard, R.C., Frank, M., Herty, M. (2014). Optimal Treatment Planning in Radiotherapy Based on Boltzmann Transport Equations. In: Leugering, G., et al. Trends in PDE Constrained Optimization. International Series of Numerical Mathematics, vol 165. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-05083-6_28

Download citation

Publish with us

Policies and ethics