Convergence of Adaptive Finite Elements for Optimal Control Problems with Control Constraints

  • Kristina Kohls
  • Kunibert G. SiebertEmail author
  • Arnd Rösch
Part of the International Series of Numerical Mathematics book series (ISNM, volume 165)


We summarize our findings in the analysis of adaptive finite element methods for the efficient discretization of control constrained optimal control problems. We particularly focus on convergence of the adaptive method, i.e., we show that the sequence of adaptively generated discrete solutions converges to the true solution. We restrict the presentation to a simple model problem to highlight the key components of the convergence proof and comment on generalizations of the presented result.


Adaptive finite elements Aposteriori error estimators Convergence analysis Optimal control Control constraints 

Mathematics Subject Classification (2010)

65N30 65N12 49J20 


  1. 1.
    I. Babuška, M. Vogelius, Feedback and adaptive finite element solution of one-dimensional boundary value problems. Numer. Math. 44, 75–102 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    A. Gaevskaya, R.H.W. Hoppe, Y. Iliash, M. Kieweg, Convergence analysis of an adaptive finite element method for distributed control problems with control constraints, in Control of Coupled Partial Differential Equations. Volume 155 of International Series of Numerical Mathematics (Birkhäuser, Basel, 2007), pp. 47–68Google Scholar
  3. 3.
    M. Hintermüller, R.H.W. Hoppe, Y. Iliash, M. Kieweg, An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints. ESAIM Control Optim. Calc. Var. 14, 540–560 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    M. Hinze, A variational discretization concept in control constrained optimization: the linear-quadratics case. Comput. Optim. Appl. 30, 45–61 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    K. Kohls, An adaptive finite element method for control-constrained optimal control problems, PhD thesis, Fachbereich Mathematik, Unversität Stuttgart, 2013Google Scholar
  6. 6.
    K. Kohls, A. Rösch, K.G. Siebert, A posteriori error analysis of optimal control problems with control constraints. SIAM J. Control Optim. 52(3), 1832–1861 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    K. Kohls, A. Rösch, K.G. Siebert, A posteriori error estimators for control constrained optimal control problems, in Constrained Optimiziation and Optimal Control for Partial Differential Equations, ed. by Leugering et al. International Series of Numerical Mathematics, vol. 160 (Birkhäuser/Springer Basel AG, Basel, 2012), pp. 431–443Google Scholar
  8. 8.
    C. Kreuzer, K.G. Siebert, Decay rates of adaptive finite elements with Dörfler marking. Numer. Math. 117, 679–716 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Volume 170 of Die Grundlehren der Mathematischen Wissenschaften (Springer, Berlin/ New York, 1971)Google Scholar
  10. 10.
    W. Liu, N. Yan, A posteriori error estimates for distributed convex optimal control problems. Adv. Comput. Math. 15, 285–309 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    C. Makridakis, R.H. Nochetto, Elliptic reconstruction and a posteriori error estimates for parabolic problems. SIAM J. Numer. Anal. 41, 1585–1594 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    P. Morin, K.G. Siebert, A. Veeser, A basic convergence result for conforming adaptive finite elements. Math. Models Methods Appl. Sci. 18, 707–737 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    A. Schmidt, K.G. Siebert, Design of Adaptive Finite Element Software. Volume 42 of Lecture Notes in Computational Science and Engineering (Springer, Berlin, 2005). The finite element toolbox ALBERTA, With 1 CD-ROM (Unix/Linux)Google Scholar
  14. 14.
    K.G. Siebert, A convergence proof for adaptive finite elements without lower bound. IMA J. Numer. Anal. 31, 947–970 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    F. Tröltzsch, Optimal Control of Partial Differential Equations. Volume 112 of Graduate Studies in Mathematics (American Mathematical Society, Providence, 2010). Theory, methods and applications, Translated from the 2005 German original by Jürgen SprekelsGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Kristina Kohls
    • 1
  • Kunibert G. Siebert
    • 1
    Email author
  • Arnd Rösch
    • 2
  1. 1.Institut für Angewandte Analysis und Numerische Simulation, Fachbereich MathematikUniversität StuttgartStuttgartGermany
  2. 2.Fakultät für MathematikEssenGermany

Personalised recommendations