Optimal Control-Based Feedback Stabilization of Multi-field Flow Problems

  • Eberhard Bänsch
  • Peter Benner
  • Jens Saak
  • Heiko K. WeicheltEmail author
Part of the International Series of Numerical Mathematics book series (ISNM, volume 165)


We discuss the numerical solution of the feedback stabilization problem for multi-field flow problems. Our approach is based on an analytical Riccati feedback concept derived by Raymond which allows to steer a perturbed flow back to its desired state, assumed to be a stationary, possibly unstable, flow profile. This concept, originally derived for incompressible flow fields described by the Navier-Stokes equations, uses a linear-quadratic regulator (LQR) approach for the linearized Navier-Stokes equations formulated on the space of divergence-free velocity fields. We extend this approach to a setting where the Navier-Stokes equations are coupled to a diffusion-convection equation describing the transport of a reactive species in a fluid. The stabilizing feedback control resulting from the LQR problem is obtained via solving the associated operator Riccati equation. We describe a numerical procedure to solve this Riccati equation numerically. This involves several technical difficulties on the algebraic level that we address in this report. We illustrate the performance of our method by a numerical example.


Coupled flow control Navier-Stokes equations Diffusion-convection equation Riccati-based feedback 

Mathematics Subject Classification (2010)

76D55 93D15 93C20 15A24 



We would like to thank Stephan Weller for his helpful advices regarding the handling of the FEM software NAVIER and René Schneider for many useful discussion throughout the whole project time. In addition, we would like to thank Martin Stoll, Andy Wathen, Matthias Heinkenschloss, and Jan Heiland for various discussions that extended our knowledge about optimal control for fluid mechanics.


  1. 1.
    L. Amodei, J.-M. Buchot, A stabilization algorithm of the Navier-Stokes equations based on algebraic Bernoulli equation. Numer. Lin. Alg. Appl. 19, 700–727 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    E. Bänsch, Local mesh refinement in 2 and 3 dimensions. IMPACT Comput. Sci. Eng. 3, 181–191 (1991)CrossRefzbMATHGoogle Scholar
  3. 3.
    E. Bänsch, Simulation of instationary, incompressible flows. Acta Math. Univ. Comenianae 67, 101–114 (1998)zbMATHGoogle Scholar
  4. 4.
    E. Bänsch, P. Benner, Stabilization of incompressible flow problems by Riccati-based feedback, in Constrained Optimization and Optimal Control for Partial Differential Equations, ed. by G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz, M. Ulbrich, S. Ulbrich. Vol. 160 of International Series of Numerical Mathematics (Birkhäuser, Basel, 2012), pp. 5–20Google Scholar
  5. 5.
    E. Bänsch, P. Benner, J. Saak, H. K. Weichelt, Riccati-based boundary feedback stabilization of incompressible Navier-Stokes flow, Preprint SPP1253-154, DFG-SPP1253, 2013.
  6. 6.
    P. Benner, J.-R. Li, T. Penzl, Numerical solution of large Lyapunov equations, Riccati equations, and linear-quadratic control problems. Numer. Lin. Alg. Appl. 15, 755–777 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    P. Benner, J. Saak, Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: a state of the art survey. GAMM Mitteilungen 36, 32–52 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    P. Benner, J. Saak, M. Stoll, H. K. Weichelt, Efficient solution of large-scale saddle point systems arising in Riccati-based boundary feedback stabilization of incompressible Stokes flow. SIAM J. Sci. Comput. 35, S150–S170 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    P. Benner, T. Stykel, Numerical solution of projected algebraic Riccati equations. SIAM J. Numer. Anal. 52(2), 581–600 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    K. A. Cliffe, T. J. Garratt, A. Spence, Eigenvalues of block matrices arising from problems in fluid mechanics. SIAM J. Matrix Anal. Appl. 15, 1310–1318 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    F. Feitzinger, T. Hylla, E. W. Sachs, Inexact Kleinman-Newton method for Riccati equations. SIAM J. Matrix Anal. Appl. 31, 272–288 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    M. Heinkenschloss, D. C. Sorensen, K. Sun, Balanced truncation model reduction for a class of descriptor systems with application to the Oseen equations. SIAM J. Sci. Comput. 30, 1038–1063 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    M. Hinze, K. Kunisch, Second order methods for boundary control of the instationary Navier-Stokes system. Z. Angew. Math. Mech. 84, 171–187 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    P. Hood, C. Taylor, Navier-Stokes equations using mixed interpolation, in Finite Element Methods in Flow Problems, ed. by J. T. Oden, R. H. Gallagher, C. Taylor, O. C. Zienkiewicz (University of Alabama in Huntsville Press, Huntsville, 1974), pp. 121–132Google Scholar
  15. 15.
    P. Kunkel, V. Mehrmann, Differential-Algebraic Equations: Analysis and Numerical Solution. Textbooks in Mathematics (EMS Publishing House, Zürich, 2006)Google Scholar
  16. 16.
    T. Penzl, LYAPACK users guide, Tech. Report SFB393/00-33, Sonderforschungsbereich 393 Numerische Simulation auf massiv parallelen Rechnern, TU Chemnitz, 09107 Chemnitz, 2000. Available from
  17. 17.
    J.-P. Raymond, Local boundary feedback stabilization of the Navier-Stokes equations, in Control Systems: Theory, Numerics and Applications, Rome, 30 March–1 April 2005, Proceedings of Science, SISSA,, 2005
  18. 18.
    J.-P. Raymond, Feedback boundary stabilization of the two-dimensional Navier-Stokes equations. SIAM J. Control Optim. 45, 790–828 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    J. Weickert, Navier-Stokes equations as a differential-algebraic system, Preprint SFB393/96-08, Preprint Series of the SFB 393 “Numerische Simulation auf massiv parallelen Rechnern”, Chemnitz University of Technology, Aug 1996Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Eberhard Bänsch
    • 1
  • Peter Benner
    • 2
    • 3
  • Jens Saak
    • 2
    • 3
  • Heiko K. Weichelt
    • 3
    Email author
  1. 1.Lehrstuhl für Angewandte Mathematik 3Friedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  2. 2.Research Group Computational Methods in Systems and Control Theory (CSC)Max Planck Institute for Dynamics of Complex Technical Systems MagdeburgMagdeburgGermany
  3. 3.Faculty of Mathematics, Research Group Mathematics in Industry and Technology (MiIT)Technische Universität ChemnitzChemnitzGermany

Personalised recommendations