Skip to main content

Ranking Cryptographic Algorithms

  • Chapter
  • First Online:
Socio-technical Design of Ubiquitous Computing Systems

Abstract

In many applications of our daily life information security plays a key role. This applies even stronger for ubiquitous computing applications where a multitude of sensors and actuators observe and control our physical environment. When developing such applications a software engineer usually relies on well-known cryptographic mechanisms like encryption or hashing. However, due to the multitude of existing cryptographic algorithms it can be challenging to select an adequate and secure one. A software engineer is not necessarily also an information security expert and, therefore, it is not obvious which one offers enough security. A general method to rank cryptographic algorithms by their strengths would mitigate this problem. With the availability of such a ranking a software engineer can either look up the current ranking of an algorithm or perform the ranking himself to determine the current strength of such an algorithm. In this chapter we present a novel method to rank cryptographic algorithms with respect to their current strengths. We evaluate our method by applying it to existing cryptographic algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. CrypTool and CrypTool 2.0 (2013). URL http://www.cryptool.org/

  2. Intel®;Core i7-3900 (2013). URL http://download.intel.com/support/processors/corei7ee/sb/core_i7-3900_d_x.pdf

  3. United Nations Statistics Division - PCs (2013). URL http://unstats.un.org/unsd/mdg/SeriesDetail.aspx?srid=606

  4. Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurcat. Chaos 16(08), 2129–2151 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Barker, E., Roginsky, A.: NIST Special Publication 800-131A Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms and Key Lengths (2011)

    Google Scholar 

  6. Biham, Ä’., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard. Springer, New York (1993)

    Book  MATH  Google Scholar 

  7. Biryukov, A., Kushilevitz, E.: Improved cryptanalysis of RC5. In: Advances in Cryptology–EUROCRYPT’98, pp. 85–99. Springer, New York (1998)

    Google Scholar 

  8. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the full AES. In: Advances in Cryptology–ASIACRYPT 2011, pp. 344–371. Springer, New York (2011)

    Google Scholar 

  9. Dai, W.: Crypto\(++\) 5.6.0 Benchmarks (2013). URL http://www.cryptopp.com/benchmarks-p4.html

  10. Doomun, M.R., Soyjaudah, K.: Analytical comparison of cryptographic techniques for resource-constrained wireless security. Int. J. Netw. Secur. 9(1), 82–94 (2009)

    Google Scholar 

  11. Ferguson, N., Schneier, B., Kohno, T.: Cryptography Engineering: Design Principles and Practical Applications. Wiley, Chichester (2010)

    Google Scholar 

  12. FIPS, P.: 46-3: Data Encryption Standard (DES). National Institute of Standards and Technology 25(10) (1999)

    Google Scholar 

  13. Jorstad, N., Landgrave, T.: Cryptographic algorithm metrics. In: 20th National Information Systems Security Conference (1997)

    Google Scholar 

  14. Kelsey, J., Schneier, B., Wagner, D.: Related-key cryptanalysis of 3-WAY, Biham-DES, CAST, DES-X, newDES, RC2, and TEA. Information and Communications Security, pp. 233–246 (1997)

    Google Scholar 

  15. Matsui, M.: Linear cryptanalysis method for des cipher. In: Advances in Cryptology-EUROCRYPT’93, pp. 386–397. Springer, New York (1994)

    Google Scholar 

  16. Matsui, M., Yamagishi, A.: A new method for known plaintext attack of FEAL cipher. In: Advances in Cryptology–Eurocrypt’92, pp. 81–91. Springer, New York (1993)

    Google Scholar 

  17. Moore, G.E.: Cramming more components onto integrated circuits (1965)

    Google Scholar 

  18. Nadeem, A., Javed, M.Y.: A performance comparison of data encryption algorithms. In: First international conference on Information and Communication Technologies, 2005. ICICT 2005, pp. 84–89. IEEE (2005)

    Google Scholar 

  19. Rivest, R.L.: RFC 1321: The MD5 Message-Digest Algorithm (1992)

    Google Scholar 

  20. Schmeh, K.: Kryptografie: Verfahren, Protokolle, Infrastrukturen. iX Edition. Dpunkt.Verlag, GmbH (2013)

    Google Scholar 

  21. Schneier, B.: Applied Cryptography: Protocols, Algorithms, and Source Code in C. Wiley, Chichester (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Kieselmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kieselmann, O., Kopal, N., Wacker, A. (2014). Ranking Cryptographic Algorithms. In: David, K., et al. Socio-technical Design of Ubiquitous Computing Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-05044-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05044-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05043-0

  • Online ISBN: 978-3-319-05044-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics