Verification of Solid State Interlocking Programs

  • Phillip James
  • Andy Lawrence
  • Faron Moller
  • Markus Roggenbach
  • Monika Seisenberger
  • Anton Setzer
  • Karim Kanso
  • Simon Chadwick
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8368)

Abstract

We report on the inclusion of a formal method into an industrial design process. Concretely, we suggest carrying out a verification step in railway interlocking design between programming the interlocking and testing this program. Safety still relies on testing, but the burden of guaranteeing completeness and correctness of the validation is in this way greatly reduced. We present a complete methodology for carrying out this verification step in the case of ladder logic programs and give results for real world railway interlockings. As this verification step reduces costs for testing, Invensys Rail is working to include such a verification step into their design process of solid state interlockings.

References

  1. 1.
    Abdulla, P.A., Deneux, J., Stålmarck, G., Ågren, H., Åkerlund, O.: Designing safe, reliable systems using scade. In: Margaria, T., Steffen, B. (eds.) ISoLA 2004. LNCS, vol. 4313, pp. 115–129. Springer, Heidelberg (2006)Google Scholar
  2. 2.
    Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.A.: LUSTRE: a declarative language for real-time programming. In: Proceedings of POPL’87, pp. 178–188 (1987)Google Scholar
  3. 3.
    Cimatti, A., Giunchiglia, F., Mongardi, G., Romano, D.: Formal verification of a railway interlocking system using model checking. FACS 10(4), 361–380 (1998). SpringerMATHGoogle Scholar
  4. 4.
    Claessen, K., Sorensson, N.: New techniques that improve mace-style finite model finding. In: Proceedings of CADE’03 Workshop: Model Computation (2003)Google Scholar
  5. 5.
    Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability solving. Formal Meth. Syst. Des. 19(1), 7–34 (2001). KluwerCrossRefMATHGoogle Scholar
  6. 6.
    Een, N., Sörensson, N.: Temporal induction by incremental SAT solving. ENTCS 89(4), 543–560 (2003)Google Scholar
  7. 7.
    Fokkink, W., Hollingshead, P.: Verification of interlockings: from control tables to ladder logic diagrams. In: Proceedings of FMICS’98, pp. 171–185 (1998)Google Scholar
  8. 8.
    Groote, J., Koorn, J., Van Vlijmen, S.: The safety guaranteeing system at station Hoorn-Kersenboogerd. In: Proceedings of Compass’95, pp. 57–68 (1995)Google Scholar
  9. 9.
    Han, K., Park, J.: Object-oriented ladder logic development framework based on the unified modeling language. In: Lee, R., Hu, G., Miao, H. (eds.) Computer and Information Science 2009. SCI, vol. 208, pp. 33–45. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Haxthausen, A.: Automated generation of formal safety conditions from railway interlocking tables. STTT. Springer (to appear)Google Scholar
  11. 11.
    IEC 61131–3 edition 2.0 2003–01. International standard. Programmable controllers. Part 3: Programming languages (January 2003)Google Scholar
  12. 12.
    James, P.: SAT-based model checking and its applications to train control software. MRes Thesis, Swansea University (2010)Google Scholar
  13. 13.
    James, P., Roggenbach, M.: Automatically verifying railway interlockings using SAT-based model checking. In: Proceedings of AVoCS’10. Electronic Communications of EASST 35 (2010)Google Scholar
  14. 14.
    Kanso, K.: Formal verification of ladder logic. MRes Thesis, Swansea University (2009)Google Scholar
  15. 15.
    Kanso, K.: Agda as a platform for the development of verified railway interlocking systems. Ph.D Thesis, Swansea University (2012)Google Scholar
  16. 16.
    Kanso, K., Moller, F., Setzer, A.: Automated verification of signalling principles in railway interlocking systems. ENTCS 250, 19–31 (2009)Google Scholar
  17. 17.
    Kanso, K., Setzer, A.: Specifying railway interlocking systems. In: Proceedings of AVoCS’09, pp. 233–236 (2009)Google Scholar
  18. 18.
    Kanso, K., Setzer, A.: Integrating automated and interactive theorem proving in type theory. In: Proceedings of AVoCS’10 (2010)Google Scholar
  19. 19.
    Lawrence, A.: Verification of railway interlockings in SCADE. MRes Thesis, Swansea University (2011)Google Scholar
  20. 20.
    Lawrence, A., Seisenberger, M.: Verification of railway interlockings in SCADE. In: Proceedings of AVoCS’10 (2010)Google Scholar
  21. 21.
    Leach, M. (ed.): Railway Control Systems: A Sequel to Railway Signalling. A & C Black, London (1991)Google Scholar
  22. 22.
  23. 23.
    Rausch, M., Krogh, B.: Formal verification of PLC programs. In: Proceedings of the American Control Conference. IEEE (1998)Google Scholar
  24. 24.
    Stålmarck, G.: System for determining propositional logic theorems by applying values and rules to triplets that are generated from boolean formula. US patent: 5,276,897 (1994)Google Scholar
  25. 25.
    The TPTP problem library for automated theorem proving. http://www.cs.miami.edu/tptp/
  26. 26.
    Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Ina Structures in Constructive Mathematics and Mathematical Logic, Steklov Mathematical Institute (1968)Google Scholar
  27. 27.
    Vincenti, W.G.: What Engineers Know and How They Know It. The Johns Hopkins University Press, Baltimore (1990)Google Scholar
  28. 28.
    Zoubek, B., Roussel, J.-M., Kwiatkowska, M.: Towards automatic verification of ladder logic programs. In: Proceedings of CESA’03. Springer (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Phillip James
    • 1
  • Andy Lawrence
    • 1
  • Faron Moller
    • 1
  • Markus Roggenbach
    • 1
  • Monika Seisenberger
    • 1
  • Anton Setzer
    • 1
  • Karim Kanso
    • 2
  • Simon Chadwick
    • 3
  1. 1.Swansea Railway Verification GroupSwansea UniversityWalesUK
  2. 2.Critical Software TechnologiesSouthamptonEngland, UK
  3. 3.Invensys RailChippenhamEngland, UK

Personalised recommendations