Skip to main content

Wheat: The Miracle Cereal

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Agriculture ((BRIEFSAGRO))

Abstract

Wheat is one of the most important cereal crops. It covers the largest area under any single crop in the world. It feeds about 40 % of the world’s population and provides 20 % of the caloric and protein requirements in human nutrition. Wheat also occupies a central position in maintaining world’s food security. Following incorporation of semi-dwarfing genes, wheat production doubled in the 1960s, an era called the Green Revolution. The Green Revolution resulted in the development of semi dwarf wheat cultivars that were highly responsive to inorganic fertilizer application, were early maturing and resistant to lodging. Semi dwarf cultivars also remained resistant to various diseases for many decades. Wheat genetic gains are less than 1 % per annum which are not sufficient to meet the future food demand of ever increasing human population. This chapter addresses importance, history, production and utilization of wheat from different perspectives.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Branlard G, Autran J, Monneveux P (1989) High molecular weight glutenin subunit in durum wheat (T. durum). Theor Appl Genet 78:353–358

    Article  CAS  PubMed  Google Scholar 

  • Campbell KG, Bergman CJ, Gualberto DG, Anderson JA, Giroux MJ, Hareland G, Fulcher RG, Sorrells ME, Finney PL (1999) Quantitative trait loci associated with kernel traits in a soft× hard wheat cross. Crop Sci 39:1184–1195

    Article  CAS  Google Scholar 

  • Chao S, Sharp P, Worland A, Warham E, Koebner R, Gale M (1989) RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor Appl Genet 78:495–504

    Article  CAS  PubMed  Google Scholar 

  • Chatrath R, Mishra B, Ferrara GO, Singh S, Joshi A (2007) Challenges to wheat production in South Asia. Euphytica 157:447–456

    Article  Google Scholar 

  • Denyer K, Clarke B, Hylton C, Tatge H, Smith AM (1996) The elongation of amylose and amylopectin chains in isolated starch granules. Plant J 10:1135–1143

    Article  CAS  Google Scholar 

  • Devaux MF, de Monredon FLD, Guibert D, Novales B, Abecassis J (1998) Particle size distribution of break, sizing and middling wheat flours by laser diffraction. J Sci Food Agric 78:237–244

    Article  CAS  Google Scholar 

  • Dhaliwal L, Nanda G, Singh H, Dhaliwal H, Kaur H (1994) Inheritance of protein content and sds-sedimentation value in two crosses of bread wheat (Triticum aestivum L.). Crop Improvement 21:65–71

    Google Scholar 

  • Feiz L, Martin J, Giroux M (2009) Creation and functional analysis of new Puroindoline alleles in Triticum aestivum. Theor Appl Genet 118:247–257

    Article  CAS  PubMed  Google Scholar 

  • Giroux M, Morris C (1997) A glycine to serine change in puroindoline b is associated with wheat grain hardness and low levels of starch-surface friabilin. Theor Appl Genet 95:857–864

    Article  CAS  Google Scholar 

  • Giroux MJ, Morris CF (1998) Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b. Proc Natl Acad Sci 95:6262–6266

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Giroux MJ, Talbert L, Habernicht DK, Lanning S, Hemphill A, Martin JM (2000) Association of puroindoline sequence type and grain hardness in hard red spring wheat. Crop Sci 40:370–374

    Article  CAS  Google Scholar 

  • Gupta P, Kulwal P, Rustgi S (2005) Wheat cytogenetics in the genomics era and its relevance to breeding. Cytogenet Genome Res 109:315–327

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Khan K, Macritchie F (1993) Biochemical basis of flour properties in bread wheats. I. Effects of variation in the quantity and size distribution of polymeric protein. J Cereal Sci 18:23–41

    Article  CAS  Google Scholar 

  • Gupta RB, Batey IL, MacRitchie F (1992) Relationship between protein composition and functional properties of wheat flours. Cereal Chem 69:125–131

    CAS  Google Scholar 

  • Knott CA, Van Sanford DA, Souza EJ (2009) Genetic variation and the effectiveness of early-generation selection for soft winter wheat quality and gluten strength. Crop Sci 49:113–119

    Article  Google Scholar 

  • Kumar P, Yadava R, Gollen B, Kumar S, Verma R, Yadav S (2011) Nutritional contents and medicinal properties of wheat: A review. Life Sci Med Res 22:1–10

    Google Scholar 

  • Law C, Young C, Brown J, Snape J, Worland A (1978) The study of grain protein control in wheat using whole chromosome substitution lines. Seed protein improvement by nuclear technique. Proceedings of the two research co-ordination meetings, Baden, 28 March–1 April 1977 and Vienna, 26–30 September 1977 Aneuploids in wheat protein improvement, pp 483–502

    Google Scholar 

  • Li Z, Rahman S, Kosar-Hashemi B, Mouille G, Appels R, Morell M (1999) Cloning and characterization of a gene encoding wheat starch synthase I. Theor Appl Genet 98:1208–1216

    Article  CAS  Google Scholar 

  • Mattern PJ, Morris R, Schmidt JW, Johnson VA (1973) Locations of genes for kernel properties in the wheat variety “Cheyenne” using chromosome substitution lines. Nebraska Agricultural Experiment Station. In: Sears ER, Sears LMS (eds) Proceedings of the international wheat genetics symposium, Agricultural Experimental Station, Univeristy of Missouri, Columbia, 1–6 August 1973, pp 703–707

    Google Scholar 

  • Miura H, Tanii S, Nakamura T, Watanabe N (1994) Genetic control of amylose content in wheat endosperm starch and differential effects of three Wx genes. Theor Appl Genet 89:276–280

    CAS  PubMed  Google Scholar 

  • Morris CF (2002) Puroindolines: the molecular genetic basis of wheat grain hardness. Plant Mol Biol 48:633–647

    Article  CAS  PubMed  Google Scholar 

  • Morris R, Sears ER (1967) The cytogenetics of wheat and its relatives. In: Quisenberry KS & Reitz LP (eds) Wheat and wheat improvement, American Society of Agronomy, Madison, pp 19–87

    Google Scholar 

  • Nakamura H (2000) The high-molecular-weight glutenin subunit composition of Japanese hexaploid wheat landraces. Crop Past Sci 51:673–677

    Article  CAS  Google Scholar 

  • Nakamura T, Vrinten P, Saito M, Konda M (2002) Rapid classification of partial waxy wheats using PCR-based markers. Genome 45:1150–1156

    Article  CAS  PubMed  Google Scholar 

  • Naranjo T, Corredor E (2004) Clustering of centromeres precedes bivalent chromosome pairing of polyploid wheats. Trends Plant Sci 9:214–217

    Article  CAS  PubMed  Google Scholar 

  • Payne PI, Nightingale MA, Krattiger AF, Holt LM (1987) The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J Sci Food Agric 40:51–65

    Article  CAS  Google Scholar 

  • Rajaram S (2001) Prospects and promise of wheat breeding in the 21st century. Euphytica 119:3–15

    Article  Google Scholar 

  • Ram S, Boyko E, Giroux M, Gill B (2002) Null mutation in puroindoline a is prevalent in Indian wheats: puroindoline genes are located in the distal part of 5DS. J Plant Biochem Biotechnol 11:79–83

    Article  CAS  Google Scholar 

  • Riley R, Chapman V (1958) Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 182:713–715

    Article  Google Scholar 

  • Rogers W, Sayers E, Ru K (2001) Deficiency of individual high molecular weight glutenin subunits affords flexibility in breeding strategies for bread-making quality in wheat Triticum aestivum L. Euphytica 117:99–109

    Article  CAS  Google Scholar 

  • Shewry P, Halford N, Tatham A (1992) High molecular weight subunits of wheat glutenin. J Cereal Sci 15:105–120

    Article  CAS  Google Scholar 

  • Sial M, Arain MA, Khanzada S, Naqvi MH, Dahot MU, Nizamani NA (2005) Yield and quality parameters of wheat genotypes as affected by sowing dates and high temperature stress. Pak J Bot 37:575

    Google Scholar 

  • Singh R, Huerta-Espino J, Sharma R, Joshi A, Trethowan R (2007) High yielding spring bread wheat germplasm for global irrigated and rainfed production systems. Euphytica 157:351–363

    Article  Google Scholar 

  • Smith AM, Denyer K, Martin CR (1995) What controls the amount and structure of starch in storage organs? Plant Physiol 107:673

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Snape J, Hyne V, Aitken K (1993) Targeting genes in wheat using marker-mediated approaches. In: Proceedings of the 8th international wheat genetics symposium, pp 749–759

    Google Scholar 

  • Vrinten PL, Nakamura T (2000) Wheat granule-bound starch synthase I and II are encoded by separate genes that are expressed in different tissues. Plant Physiol 122:255–264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wanjugi H, Hogg A, Martin J, Giroux M (2007) The role of puroindoline A and B individually and in combination on grain hardness and starch association. Crop Sci 47:67–76

    Article  CAS  Google Scholar 

  • Yan L, Fairclough R, Bhave M (1998) Molecular evidence supporting the origin of the B genome of Triticum turgidum from T. speltoides. In: Proceedings of 9th international wheat genetics symposium, pp 119–121

    Google Scholar 

  • Zhao L, Zhang K-P, Liu B, Deng Z-y, Qu H-L, Tian J-C (2010) A comparison of grain protein content QTLs and flour protein content QTLs across environments in cultivated wheat. Euphytica 174:325-335

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Asif .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Asif, M., Iqbal, M., Randhawa, H., Spaner, D. (2014). Wheat: The Miracle Cereal. In: Managing and Breeding Wheat for Organic Systems. SpringerBriefs in Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-319-05002-7_1

Download citation

Publish with us

Policies and ethics