Open image in new windowAn Overview of Rock Avalanche-Substrate Interactions

  • Anja Dufresne
Conference paper


Large rock or debris avalanches inevitably encounter and interact with a variety of earth materials along their paths. These substrate materials influence rock and debris avalanche emplacement in one or several of the following ways (1) longer runout due to an increase in volume by entrainment on the steep failure slope, (2) higher mobility by reduction in basal frictional resistance (e.g. emplacement over glacier ice), or (3) a larger area of deposition due to transformation into debris flows, contrasted by (4) runout impediment due to interactions along the flatter runout path (e.g. bulldozing of substrate material or entrainment of high-friction debris), and introducing (5) flow complexities resulting from changes in basal mechanical properties and other localized interactions. Additionally, the total area affected by a rock avalanche may extend beyond the deposit margin itself when sediments in front of the rock avalanche are bulldozed or are mobilized and flow independent of the rock avalanche for some further distance.


Rock avalanche Debris avalanche Runout-path material Entrainment 



This contribution is based in part on the author’s PhD research at the University of Canterbury, Christchurch, New Zealand, which was funded by a 3-year (2006–2009) New Zealand International Doctoral Research Scholarship (NZIDRS) and the University’s Mason Trust. Ongoing research at the University of Freiburg is funded by the German Research Foundation (DFG), Project AD-1294/2: “Long-runout landslides: the effect of lithology on comminution, (micro-) structure, morphology and runout”. Careful reviews by G.B. Crosta and J.J. Clague have improved this manuscript and are gratefully acknowledged.


  1. Abbot PL, Kerr DR, Borron SE, Washburn JL, Rightmer DA (2002) Neogene sturzstrom deposits, Split Mountain area, Anza-Borrego Desert State Park, California. In: Evans SG, DeGraff JV (eds) Catastrophic landslides: effects, occurrence, and mechanisms, vol XV, Reviews in engineering geology. Geological Society of America, Boulder, CO, pp 379–400CrossRefGoogle Scholar
  2. Abdrakhmatov K, Strom A (2006) Dissected rockslide and rock avalanche deposits: Tien Shan, Kyrgyzstan. In: Evans SG, Scarascia-Mugnozza G, Strom AL, Hermanns RL (eds) Landslides from massive rock slope failures. Springer, NetherlandsGoogle Scholar
  3. Abele G (1974) Bergstürze in den Alpen. Wissenschaftliche Vereinshefte 25: 230 ppGoogle Scholar
  4. Abele G (1997) Rockslide movement supported by the mobilization of groundwater-saturated valley floor sediments. Z Geomorphol 41(1):1–20Google Scholar
  5. Belousov A, Belousova M, Voight B (1999) Multiple edifice failures, debris avalanches and associated eruptions in the Holocene history of Shiveluch volcano, Kamchatka, Russia. Bull Volcanol 61(5):324–342CrossRefGoogle Scholar
  6. Buss E, Heim A (1881) Der Bersturz von Elm. Zürich, WorsterGoogle Scholar
  7. Choffat P (1929) L’ecroulement d’Arvel (Villeneuve) de 1922. Bull Soc Vaud Sci Nat 57(1):5–28Google Scholar
  8. Clavero J, Sparks R, Huppert H, Dade W (2002) Geological constraints on the emplacement mechanism of the Parinacota debris avalanche, northern Chile. Bull Volcanol 64(1):40–54CrossRefGoogle Scholar
  9. Clavero J, Polanco E, Godoy E, Aguilar G, Sparks RSJ, van Wyk de Vries B, de Arce CP, Matthews S (2004) Substrata influence in the transport and emplacement mechanism of the Ollagüe debris avalanche (northern Chile). Acta Vulcanologica 64(1):59–76Google Scholar
  10. Crosta GB, Imposimato S, Roddemann D (2009) Numerical modeling of entrainment/deposition in rock and debris avalanches. Eng Geol 109(1–2):135–145CrossRefGoogle Scholar
  11. Dufresne A (2012) Granular flow experiments on the interaction with stationary runout path materials and comparison to rock avalanche events. Earth Surf Process Landf 37:1527–1541CrossRefGoogle Scholar
  12. Dufresne A, Davies TR, McSaveney MJ (2009) Influence of runout-path material on emplacement of the Round Top rock avalanche, New Zealand. Earth Surf Process Landf 35:190–201Google Scholar
  13. Evans SG, Clague JJ (1998) Rock avalanche from Mount Munday, Waddington Ridge, British Columbia, Canada. Landslide News 11:23–25Google Scholar
  14. Friedmann SJ (1997) Rock-avalanche elements of the Shadow Valley basin, eastern Mojave Desert, California: processes and problems. J Sediment Res 67(5):792–804Google Scholar
  15. Gauer P, Issler D (2004) Possible erosion mechanism in snow avalanches. Ann Glaciol 38:384–392CrossRefGoogle Scholar
  16. Hewitt K (2006) Rock avalanches with complex run out and emplacement, Karakoram Himalaya, Inner Asia. In: Evans SG, Scarascia-Mugnozza G, Strom AL, Hermanns RL (eds) Landslides from massive rock slope failures. Springer, NetherlandsGoogle Scholar
  17. Hewitt K, Clague JJ, Orwin JF (2008) Legacies of catastrophic rock slope failures in mountain landscapes. Earth Sci Rev 87:1–38CrossRefGoogle Scholar
  18. Hsü KJ (1975) Catastrophic debris streams (Sturzstroms) generated by rockfalls. Geol Soc Am Bull 86(1):129–140CrossRefGoogle Scholar
  19. Hungr O (1990) Mobility of rock avalanches. Reports of the National Research Institute for Earth Sciences and Disaster Prevention, vol 46. Tsukuba, Japan, pp 11–20Google Scholar
  20. Hungr O, Evans SG (2004) Entrainment of debris in rock avalanches: an analysis of a long-runout mechanism. Geol Soc Am Bull 116:1240–1252CrossRefGoogle Scholar
  21. Hungr O, Evans SG, Bovis M, Hutchinson JN (2001) Review of the classification of landslides of the flow type. Environ Eng Geosci 7:221–238Google Scholar
  22. Hutchinson JN, Bhandari RK (1971) Undrained loading, a fundamental mechanism of mudflows and other mass movements. Geotechnique 21:353–358CrossRefGoogle Scholar
  23. Iverson RM (1997) The physics of debris flows. Rev Geophys 35(3):245–296CrossRefGoogle Scholar
  24. Johnsons B (1978) Blackhawk landslide, California. In: Voight B (ed) Rockslides and avalanches, vol 1, Natural phenomena. Elsevier, Amsterdam, pp 481–504CrossRefGoogle Scholar
  25. Legros F (2002) The mobility of long-runout landslides. Eng Geol 63:301–331CrossRefGoogle Scholar
  26. Philip H, Ritz J-F (1999) Gigantic paleolandslide associated with active faulting along the Bogd fault (Gobi-Altay, Mongolia). Geology 27(3):211–214CrossRefGoogle Scholar
  27. Piotrowski JA, Larsen NK, Junge FW (2004) Reflections on soft subglacial beds as a mosaic of deforming and stable spots. Quat Sci Rev 23:993–1000CrossRefGoogle Scholar
  28. Prager C, Krainer K, Seidl V, Chwatal W (2006) Spatial features of Holocene sturzstrom-deposits inferred from subsurface investigations (Fernpass rockslide, Tyrol, Austria). Geo Alp 3:147–166Google Scholar
  29. Sassa K (1988) Geotechnical model for the motion of landslides. In: Proceedings, 5th international symposium on landslides, vol 1. pp 37–56Google Scholar
  30. Sosio R, Crosta GB, Chen JH, Hungr O (2014) Runout prediction of rock avalanche in volcanic and glacial terrains. In: Margottini C, Canuti P, Sassa K (eds) Landslide science and practice, vol 3. Springer, NetherlandsGoogle Scholar
  31. van Wyk de Vries B, Self S, Francis PW, Keszthelyi L (2001) A gravitational spreading origin for the Socompa debris avalanches. J Volcanol Geoth Res 105(3):225–247CrossRefGoogle Scholar
  32. Voight B, Sousa J (1994) Lessons from Ontake-San: a comparative analysis of debris avalanche dynamics. Eng Geol 38(3–4):261–297CrossRefGoogle Scholar
  33. von Poschinger A (1994) Some special aspects of “impact” of a landslide on the valley floor. Landslide News 8:26–28Google Scholar
  34. Wang G, Huang R, Chigira M, Wu X, Lourenco SDN (2012) Landslide amplification by liquefaction of runout-path material after the 2008 Wenchuan (M 8.0) earthquake, China. Earth Surf Process Landf 38(3):265–274CrossRefGoogle Scholar
  35. Xu Q, Shang Y, van Asch T, Wang S, Zhang Z, Dong X (2012) Observations from the large, rapid Yigong rock slide—debris avalanche, southeast Tibet. Can Geotech J 49:589–606CrossRefGoogle Scholar
  36. Yarnold JC (1993) Rock-avalanche characteristics in dry climates and the effect of flow into lakes: insights from mid-Tertiary sedimentary breccias near Artillery Peak, Arizona. Geol Soc Am Bull 105(3):345–360CrossRefGoogle Scholar
  37. Yarnold JC, Lombard JP (1989) Facies model for the large rock avalanche deposits formed in dry climates. In: Colburn IP, Abbott PL, Minch J (eds) Field trip guidebook—Pacific section, Tulsa, Oklahoma. Society of Economic Palaeontologists and Mineralogists, vol 62. pp 9–31Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institut für Geo- und Umweltnaturwissenschaften, Geologie, Albert-Ludwigs Universität FreiburgFreiburgGermany

Personalised recommendations