Scrutiny of Nonlinear Adaptive Output Feedback Control for Robotic Manipulators

  • Davood Mohammadi Souran
  • Mohammad Hassan Askari
  • Nima Razagh Pour
  • Behrooz Razeghi
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 264)

Abstract

In this paper we present a nonlinear adaptive output feedback control algorithm. The algorithm is for model reference adaptive control of robotic manipulators. This algorithm uses model signals in the regressor and the linearization law and hence, does not require an observer. We show via various simulations that this algorithm has a region of convergence. We also show that the region of convergence can be increased if a normalizing factor is used in the adaptation law.

Keywords

Adaptive control Nonlinear System Algorithm Robotic Manipulators 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Craig, J.J., Hsu, P., Sastry, S.S.: Adaptive control of mechanical manipulators. The International Journal of Robotics Research 6(2), 16–27 (1987)CrossRefGoogle Scholar
  2. 2.
    Slotine, J.-J.E., Li, W.: On the adaptive control of robot manipulators. The International Journal of Robotics Research 6(3), 49–59 (1987)CrossRefGoogle Scholar
  3. 3.
    Hajjir, H., Schwartz, H.M.: An adaptive nonlinear output feedback controller for robot manipulators. In: Proceedings of the American Control Conference (June 1999)Google Scholar
  4. 4.
    Lee, K.W., Khalil, H.K.: Adaptive output feedback control of robot manipulators using high-gain observer. International Journal of Control 6, 869–886 (1997)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Arcak, G.M., Kokotovic, P.: Nonlinear Observers: A Circle Criterion Design D. In: Proc. of 38th Conf. on Decision and Control (December 1999)Google Scholar
  6. 6.
    Park, J., Chung, W.K.: Analytic Nonlinear H∞Inverse-Optimal Control for Euler-Lagrange System. IEEE Transactions on Robotics and Automation 16(6), 847–854 (2000)CrossRefGoogle Scholar
  7. 7.
    Lee, G.-W., Cheng, F.-T.: Robust Control of Manipulators Using the Computed Torque Plus H∞Compensation Method. IEE Proceedings Control Theory Application 143(1), 64–72 (1996)CrossRefMATHGoogle Scholar
  8. 8.
    Wang, H., Wei, L., Mu, D., Li, Y.: Robust Adaptive Control of X-Y Position Table with Uncertainty. In: Proceedings of the 5th World Congress on Intelligent Control and Automation, pp. 3366–3369 (June 2004)Google Scholar
  9. 9.
    Lopez-Araujo, D., Zavala-Rio, A., Santibanez, V., Reyes, F.: Output-feedback adaptive control for the global regulation of robot manipulators with bounded inputs. International Journal of Control, Automation and Systems 11(1), 105–115 (2012)CrossRefGoogle Scholar
  10. 10.
    Abdessameud, A., Khelfi, M.F.: A variable structure observer for the control of robot manipulators. International Journal of Applied Mathematics and Computer Science 16(2), 189–196 (2006)MATHMathSciNetGoogle Scholar
  11. 11.
    Moreno-Valenzuela, J., Santibanez, V., Campa, R.: A class of OFT controllers for torque-saturated robot manipulators: Lyapunov stability and experimental evaluation. Journal of Intelligent & Robotic Systems 51(1), 65–88 (2008)CrossRefGoogle Scholar
  12. 12.
    Moreno-Valenzuela, J., Santibanez, V., Campa, R.: On output feedback tracking control of robots manipulators with bounded torque input. International Journal of Control, Automation, and Systems 6(1), 76–85 (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Davood Mohammadi Souran
    • 1
  • Mohammad Hassan Askari
    • 2
  • Nima Razagh Pour
    • 3
  • Behrooz Razeghi
    • 4
  1. 1.School of Electrical and Computer EngineeringShiraz UniversityShirazIran
  2. 2.Sun Air Research InstituteFerdowsi University of MashhadMashhadIran
  3. 3.Department of Electrical EngineeringSadjad Institute of Higher EducationMashhadIran
  4. 4.Department of Electrical EngineeringFerdowsi University of MashhadMashhadIran

Personalised recommendations