Hybrid Shadow Restitution Technique for Shadow-Free Scene Reconstruction

  • Muthukumar Subramanyam
  • Krishnan Nallaperumal
  • Ravi Subban
  • Pasupathi Perumalsamy
  • Shashikala Durairaj
  • S. Selva Kumar
  • S. Gayathri Devi
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 264)


Shadows are treated as a noise in computer vision scenario, even though it may found useful in many applications.  This research focuses the insignificant shadow restitution methodology to improve the scene visibility and to support the dynamic range reduction. The Hybrid technique combines the physical, geometric, textural, spatial and photometric features for shadow detection. Using feature importance statistics the appropriate criteria is chosen and applied. The experiments over wide dataset prove that the proposed hybrid technique outperforms peer research proposals with the expense of computational cost and time. The output results in a shadow-free, visually plausible high quality image.


Shadow removal Shadow detection Shadow reconstruction De- Shadowing Shadow Enhancement Hybrid Technique Texture Gradient Chromaticity Shadow Enhancement Image Reconstruction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pouli, F.T.: Statistics of image categories for computer graphics applications. Diss. University of Bristol (2011)Google Scholar
  2. 2.
    Arbel, E., Hel-Or, H.: Shadow removal using intensity surfaces and texture anchor points. PAMI 99 (2011)Google Scholar
  3. 3.
    Dee, H.M., Paulo, E.: Santos. “The perception and content of cast shadows: an interdisciplinary review”. Spatial Cognition & Computation 11(3), 226–253 (2011)CrossRefGoogle Scholar
  4. 4.
    Muthukumar, S., Subban, R., Krishnan, N., Pasupathi, P.: Real Time Insignificant Shadow Extraction from Natural Sceneries. In: Thampi, S.M., Abraham, A., Pal, S.K., Rodriguez, J.M.C. (eds.) Recent Advances in Intelligent Informatics. AISC, vol. 235, pp. 391–399. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  5. 5.
    Tian, J., Sun, J., Tang, Y.: Tricolor attenuation model for shadow detection. IEEE Transactions on Image Processing 18 (2009)Google Scholar
  6. 6.
    Amato, A., et al.: Moving Cast shadow Detection Methods for Video surveillance Application, pp. 1–25 (2013)Google Scholar
  7. 7.
    Wesolkowski, S.B.: Color image edge detection and segmentation: a comparison of the vector angle and the Euclidean distance color similarity measures. Dissertation University of Waterloo (1999)Google Scholar
  8. 8.
    Xiao, C., et al.: Fast Shadow Removal Using Adaptive Multi‐Scale Illumination Transfer. In: Computer Graphics Forum (2013)Google Scholar
  9. 9.
    Liu, F., Gleicher, M.: Texture-consistent shadow removal. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 437–450. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Scanlan, J.M., Chabries, D.M., Christiansen, R.: A shadow detection and Removal algorithm for 2-d images. In: Proc. of IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 2057–2060 (1990)Google Scholar
  11. 11.
    Jiang, H., Drew, M.S.: Shadow-resistance tracking in video. In: ICME 2003: Intl. Conf. on Multimedia and Expo, pp. 7–80 (2003)Google Scholar
  12. 12.
    Funka-Lea, G., Bajcsy, R.: Combining color and geometry for the active, visual recognition of shadows. In: Proc. of IEEE Int. Conf. on Computer Vision (ICCV), pp. 203–209 (1995)Google Scholar
  13. 13.
    Salvadoor, E., et al.: Cast Shadow Segmentation Using Invariant Color Features. Computer Vision and Image Understanding 95(2), 238–259 (2004)CrossRefGoogle Scholar
  14. 14.
    Mikic, I., Cosman, P., Kogut, G., Trivedi, M.M.: Moving Shadow and Object Detection in Traffic Scenes. In: Proc. Int Conf. Pattern Recognition, vol. 1, pp. 321–324 (2000)Google Scholar
  15. 15.
    Horprasert, et al.: statistical approach for real-time robust background subtraction and shadow detection. In: IEEE ICCV, vol. 99, pp. 1–19 (1999)Google Scholar
  16. 16.
    Nadimi, S., et al.: Physical models for moving shadow and object detection in video. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(8), 1079–1087 (2004)CrossRefGoogle Scholar
  17. 17.
    Wu, et al.: A bayesian approach for shadow extraction from a single image. In: ICCV 2005, vol. 1, pp. 480–487. IEEE (2005)Google Scholar
  18. 18.
    Leone, A., et al.: A texture-based approach for shadow detection. In: IEEE Conference on Advanced Video and Signal Based Surveillance, pp. 371–376 (2005)Google Scholar
  19. 19.
    Withagen, P.J., Groen, F.C.A., Schutte, K.: IAS technical report IAS UVA-07-02 Shadow detection using a physical basis. Intelligent Autonomous Systems, University of Amsterdam (2007)Google Scholar
  20. 20.
    Xiao, Chunxia, et al., Fast Shadow Removal Using Adaptive Multi-Scale Illumination Transfer. In: Computer Graphics Forum (2013)Google Scholar
  21. 21.
    Ibrahim, M.M., Rajagopal, A.: Shadow detection in images. US Patent No.2007/0110309 A1 (2007)Google Scholar
  22. 22.
    Finlayson, G., Hordley, S., Drew, M.: Removing Shadows From Images. Eccv, 129–132. 2 (2006)Google Scholar
  23. 23.
    Zhu, J., Samuel, K.G.G., Masood, S., Tappen, M.F.: &ldquo, Learning to Recognize Shadows in Monochromatic Natural Images. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition (2010)Google Scholar
  24. 24.
    Rita, C., et al.: Detecting moving objects, ghosts, and shadows in video streams. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(10), 1337–1342 (2003)Google Scholar
  25. 25.
    Andrea, P., et al.: Detecting moving shadows: algorithms and evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(7), 918–923 (2003)Google Scholar
  26. 26.
    Huerta, et al.: Detection and removal of chromatic moving shadows in surveillance scenarios. In: 12th International Conference Computer Vision. IEEE (2009)Google Scholar
  27. 27.
    Muthukumar, S., Krishnan, N., Tulasi Nachiyar, K., Pasupathi, P.: Shadow Detection in an image using Fuzzy based Approach. International Journal on Information and Communication Technology, 123–4560 (2011), doi:DOI10.5120/502-819, ISSN 0123-4560Google Scholar
  28. 28.
    Subban, R., Muthukumar, S., Pasupathi, P.: Image Restoration based on Scene Adaptive Patch In-Painting for Tampered Natural Scenes. In: Thampi, S.M., Abraham, A., Pal, S.K., Rodriguez, J.M.C. (eds.) Recent Advances in Intelligent Informatics. AISC, vol. 235, pp. 65–72. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  29. 29.
    Muthukumar, S., Krishnan, N., Tulasi Nachiyar, K., Pasupathi, P., Deepa, S.: Fuzzy information system based on image segmentation by using shadow detection. In: 2010 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), pp. 1–6. IEEE (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Muthukumar Subramanyam
    • 1
  • Krishnan Nallaperumal
    • 2
  • Ravi Subban
    • 3
  • Pasupathi Perumalsamy
    • 2
  • Shashikala Durairaj
    • 2
  • S. Selva Kumar
    • 2
  • S. Gayathri Devi
    • 2
  1. 1.Dept of CSENITPuducherryIndia
  2. 2.CITEMS UniversityTirunelveliIndia
  3. 3.Dept of CSEPondicherry UniversityPondicherryIndia

Personalised recommendations