Redundant Discrete Wavelet Transform Based Medical Image Fusion

  • Rajiv Singh
  • Ashish Khare
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 264)


In this work, we propose redundant discrete wavelet transform (RDWT) based fusion for multimodal medical images. The shift invariance nature of RDWT shows its usefulness for fusion. The proposed method uses maximum scheme for fusion of medical images. We have experimented with several sets of medical images and shown results for three sets of medical images. The effectiveness of fusion results has been shown using edge strength, and mutual information fusion metrics. The qualitative and quantitative comparison of the proposed method with spatial domain fusion methods (Linear, Sharp, and principal component analysis (PCA)) and wavelet domain fusion methods (discrete wavelet transform (DWT), lifting wavelet transform (LWT), and multiwavelet transform (MWT)) proves the superiority of the proposed fusion method.


Medical Image Fusion Spatial and Transform Domain Fusion Shift Invariance Redundant Discrete Wavelet Transform Fusion Metrics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dasarathy, B.V.: Information fusion in the realm of medical applications – A bibliographic glimpse at its growing appeal. Information Fusion 13(1), 1–9 (2012)CrossRefGoogle Scholar
  2. 2.
    Singh, R., Khare, A.: Fusion of multimodal medical images using Daubechies complex wavelet transform- A multiresolution approach. Information fusion (Article in Press),
  3. 3.
    Singh, R., Srivastava, R., Prakash, O., Khare, A.: Multimodal medical image fusion in dual tree complex wavelet domain using maximum and average fusion rules. Journal of Medical Imaging and Health Informatics 2(2), 168–173 (2012)CrossRefGoogle Scholar
  4. 4.
    Rockinger, O., Fechner, T.: Pixel level fusion: the case of image sequences. In: Signal Processing, Sensor Fusion, and Target Tracking (SPIE), vol. 3374, pp. 378–388 (1998)Google Scholar
  5. 5.
    Clevers, J.G.P.W., Zurita-Milla, R.: Multisensor and multiresolution image fusion using the linear mixing model. In: Stathaki, T. (ed.) Image Fusion: Algorithms and Applications, pp. 67–84. Academic Press, Elsevier (2008)Google Scholar
  6. 6.
    Tian, J., Chen, L., Ma, L., Yu, W.: Multi-focus image fusion using a bilateral gradient-based sharpness criterion. Optics Communications 284(1), 80–87 (2011)CrossRefGoogle Scholar
  7. 7.
    Naidu, V.P.S., Raol, J.R.: Pixel-level image fusion using wavelets and principal component analysis. Defence Science Journal 58(3), 338–352 (2008)Google Scholar
  8. 8.
    Hamza, A.B., He, Y., Krim, H., Willsky, A.: A multiscale approach to pixel-level image fusion.  Integrated Computer-Aided Engineering 12(2), 135–146 (2005)Google Scholar
  9. 9.
    Li, H., Manjunath, B.S., Mitra, S.K.: Multisensor image fusion using the wavelet transform. Graphical Models and Image Processing 57(3), 235–245 (1995)CrossRefGoogle Scholar
  10. 10.
    Cheng, S., He, J., Lv, Z.: Medical images of PET/CT weighted fusion based on wavelet transform. In: The Second International Conference on Bioinformatics and Biomedical Engineering (ICBBE), pp. 2523–2525 (2008)Google Scholar
  11. 11.
    Kor, S., Tiwary, U.S.: Feature level fusion of multimodal medical images in lifting wavelet transform domain. In: 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS 2004), vol. 1, pp. 1479–1482 (2004)Google Scholar
  12. 12.
    Liu, Y., Yang, J., Sun, J.: PET/CT medical image fusion algorithm based on multiwavelet transform. In: Second International Conference on Advanced Computer Control (ICACC), vol. 2, pp. 264–268 (2010)Google Scholar
  13. 13.
    Zhang, Q., Wang, L., Li, H., Ma, Z.: Similarity-based multimodality image fusion with shiftable complex directional pyramid. Pattern Recognition Letters 32(13), 1544–1553 (2011)CrossRefGoogle Scholar
  14. 14.
    Singh, R., Khare, A.: Multimodal medical image fusion using Daubechies complex wavelet transform. In: Proceedings of IEEE International Conference on Information and Communication Technology (ICT 2013I), Kanyakumari, India, pp. 869–873 (2013)Google Scholar
  15. 15.
    Fowler, J.: The redundant discrete wavelet transform and additive noise. IEEE Signal Processing Letters 12(9), 629–632 (2005)CrossRefGoogle Scholar
  16. 16.
    Singh, R., Vatsa, M., Noore, A.: Multimodal Medical Medical Image Fusion using Redundant Wavelet Transform. In: Proceedings of Seventh International Conference on Advances in Pattern Recognition, pp. 232–235 (2009)Google Scholar
  17. 17.
    Yockey, D.A.: Artifacts in wavelet merging. Optical Engineering 35(7), 2094–2101 (1996)CrossRefGoogle Scholar
  18. 18.
    Stathaki, T. (ed.): Image Fusion Algorithms and Applications. Elsevier (2011)Google Scholar
  19. 19.
    Adam, I.: Complex wavelet transform: application to denoising. PhD Thesis, Politehnica University of Timisoara Universite DE RENNES (2010),  
  20. 20.
    Li, S., Yang, B., Hu, J.: Performance comparison of different multi-resolution transforms for image fusion. Information Fusion 12(2), 74–84 (2011)CrossRefGoogle Scholar
  21. 21.
    Singh, R., Khare, A.: Objective evaluation of noisy multimodal medical image fusion using Daubechies complex wavelet transform. In: Proceedings of the 8th Indian Conference on Vision, Graphics and Image Processing (ICVGIP-12). IIT Mumbai, India (2012),
  22. 22.
    Guihong, Q., Dali, Z., Pingfan, Y.: Information Measure for Performance of Image Fusion. Electronics Letters 38(7), 313–315 (2002)CrossRefGoogle Scholar
  23. 23.
    Xydeas, S., Petrovic, V.: Objective Image Fusion Performance Measure. Electronics Letters 36(4), 308–309 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Electronics & CommunicationUniversity of AllahabadAllahabadIndia

Personalised recommendations