An Exploration of Mixture Models to Maximize between Class Scatter for Object Classification in Large Image Datasets

  • K. Mahantesh
  • V. N. Manjunath Aradhya
  • C. Naveena
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 264)

Abstract

This paper presents a method for determining the significant features of an image within a maximum likelihood framework by remarkably reducing the semantic gap between high level and low level features. With this concern, we propose a FLD-Mixture Models and analyzed the effect of different distance metrics for Image Retrieval System. In this method, first Expectation Maximization (EM) algorithm method is applied to learn mixture of Gaussian distributions to obtain best possible maximum likelihood clusters. Gaussian Mixture Models is used for clustering data in unsupervised context. Further, Fisher’s Linear Discriminant Analysis( FLDA) is applied for K = 4 mixtures to preserve useful discriminatory information in reduced feature space. Finally, six different distance measures are used for classification purpose to obtain an average classification rate. We examined our proposed model on Caltech-101, Caltech-256 & Corel-1k datasets and achieved state-of-the-art classification rates compared to several well known benchmarking techniques on the same datasets.

Keywords

Image Retrieval System Maximum likelihood clusters EM algorithm FLD Similarity measures Gausssian Mixtures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bo, L., Ren, X., Fox, D.: Multipath Sparse Coding Using Hierarchical Matching Pursuit. In: IEEE International Conference on Computer Vision and Pattern Recognition (2013)Google Scholar
  2. 2.
    Lanckriet, G.R.G., Cristianini, N., Bartlett, P., Ghaoui, L.E., Jordan, M.I.: Learning the kernel matrix with semidefinite programming. JMLR 5, 27–72 (2004)MATHGoogle Scholar
  3. 3.
    Swain, M.J., Ballard, D.: Indexing via color histograms. In: Proceedings of 3rd Int. Conf. Comput. Vision, pp. 11–32 (1991)Google Scholar
  4. 4.
    Stricker, M., Orengo, M.: Similarity of color images. In: Proc. SPIE, Storage Retriev Image Video Database, pp. 381–392 (1995)Google Scholar
  5. 5.
    Pass, G., Zabih, R., Miller, J.: Comparing images using color coherence vectors. In: Proceedings of 4th ACM Multimedia Con., pp. 65–73 (1997)Google Scholar
  6. 6.
    Huang, J., Kumar, S.R., Mitra, M.: Combining supervised learning with color correlograms for content-based image retrieval. In: Proceedings of 5th ACM Multimedia Conf., pp. 325–334 (1997)Google Scholar
  7. 7.
    Chen, L.T., Chang, C.C.: Color image retrieval technique based on color features and image bitmap. Inf. Process. Manage. 43(2), 461–472 (2007)CrossRefGoogle Scholar
  8. 8.
    Ma, W.Y., Zhang, H.J.: Benchmarking of image features for content-based retrieval. In: Proceedings of the 32nd Asilomar Conference on Signals, Systems and Computers, vol. 1, pp. 253–257 (1998)Google Scholar
  9. 9.
    Lin, C.H., Huang, D.C., Chan, Y.K., Chen, K.H., Chang, Y.J.: Fast color-spatial feature based image retrieval methods. Expert Systems with Applications 38(9), 11412–11420 (2011)CrossRefGoogle Scholar
  10. 10.
    Xingyuan, W., Zongyu, W.: A novel method for image retrieval based on structure elements’ descriptor. J. Vis. Commun. Image R. 24, 63–74 (2013)CrossRefGoogle Scholar
  11. 11.
    Xing-yuan, W., Zhi-feng, C., Jiao-jiao, Y.: An effective method for color image retrieval based on texture. Computer Standards & Interfaces 34, 31–35 (2012)CrossRefGoogle Scholar
  12. 12.
    Krishnamoorthy, R., Sathiya Devi, S.: Image retrieval using edge based shape similarity with multiresolution enhanced orthogonal polynomials model. Digital Signal Processing 23, 555–568 (2013)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. CVPR 2, 2169–2178 (2006)Google Scholar
  14. 14.
    Yang, J., Yuz, K., Gongz, Y., Huang, T.: Linear Spatial Pyramid Matching Using Sparse Coding for Image Classification. In: IEEE CVPR, pp. 1794–1801 (2009)Google Scholar
  15. 15.
    Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3, 7186 (1991)CrossRefGoogle Scholar
  16. 16.
    Boiman, O., Shechtman, E., Irani, M.: In defense of nearest-neighbor based image classification. In: IEEE CVPR, pp. 1–8 (2008)Google Scholar
  17. 17.
    Cann, S.M., Lowe, D.G., Bayes, L.N.: Nearest Neighbor for Image Classification. In: IEEE CVPR, pp. 3650–3656 (2012)Google Scholar
  18. 18.
    Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 711–720 (1997)CrossRefGoogle Scholar
  19. 19.
    Kim, H.C., Kim, D., Bang, S.Y.: Face recognition using LDA mixture model. Pattern Recognition Letters 24, 2815–2821 (2003)CrossRefGoogle Scholar
  20. 20.
    Martinez, A.M., Kak, A.C.: PCA versus LDA. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 228–233 (2001)CrossRefGoogle Scholar
  21. 21.
    Fisher, R.A.: The statistical utilization of multiple measurements. Annals of Eugenics 8, 376–386 (1938)CrossRefGoogle Scholar
  22. 22.
    Bishop, C.: Pattern Recognition and Machine Learning. Springer (2006)Google Scholar
  23. 23.
    Jordon, M., Jacobs, R.: Hierarchical mixtures of experts and the EM algorithm. Neural Computing 6, 181–214 (1994)CrossRefGoogle Scholar
  24. 24.
    Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. In: IEEE CVPR Workshop of Generative Model Based Vision (2004)Google Scholar
  25. 25.
    Griffin, G., Holub, A., Perona, P.: Caltech 256 object category dataset. Technical Report UCB/CSD-04-1366, California Institute of Technology (2007)Google Scholar
  26. 26.
    Wang, J.Z., Li, J., Wiederhold, G.: SIMPLIcity: Semantics-sensitive Integrated Matching for Picture LIbraries. IEEE Trans. on Pattern Analysis and Machine Intelligence 23(9), 947–963 (2001)CrossRefGoogle Scholar
  27. 27.
    Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Locality-constrained Linear Coding for Image Classification. In: IEEE CVPR, pp. 3360–3367 (2010)Google Scholar
  28. 28.
    Serre, T., Wolf, L., Poggio, T.: Object recognition with features inspired by visual cortex. In: CVPR, San Diego (June 2005)Google Scholar
  29. 29.
    Holub, A., Welling, M., Perona, P.: Exploiting unlabelled data for hybrid object classification. In: NIPS Workshop on Inter-Class Transfer, Whistler, B.C. (December 2005)Google Scholar
  30. 30.
    Zhang, H., Berg, A.C., Maire, M., Malik, J.: SVM-KNN: Discriminative Nearest Neighbor Classification for Visual Category Recognition. In: CVPR, IEEE-2006, vol. 2, pp. 2126–2136 (2006)Google Scholar
  31. 31.
    Lu, Z., Ip, H.H.: Image categorization by learning with context and consistency. In: CVPR (2009)Google Scholar
  32. 32.
    Gao, S., Tsang, I.W.H., Chia, L.T., Zhao, P.: Local features are not lonely? laplacian sparse coding for image classification. In: CVPR (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • K. Mahantesh
    • 1
  • V. N. Manjunath Aradhya
    • 2
  • C. Naveena
    • 3
  1. 1.Department of ECESri Jagadguru Balagangadhara Institute of TechnologyBangaloreIndia
  2. 2.Department of MCASri Jayachamarajendra College of EngineeringMysoreIndia
  3. 3.Department of CSEHKBK College of EngineeringBangaloreIndia

Personalised recommendations