A Novel Color Image Coding Technique Using Improved BTC with k-means Quad Clustering

  • Jayamol Mathews
  • Madhu S. Nair
  • Liza Jo
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 264)


A new approach to color image compression on HSV model with good quality of reconstructed images and better compression ratio using Improved Block Truncation Coding algorithm with k-means Quad Clustering (IBTC-KQ) is proposed in this paper. The RGB plane of the color image is transformed into HSV plane in order to reduce the high degree of correlation between the RGB planes. Each HSV plane is then encoded using IBTC-KQ method. The block sizes are chosen based on the information content of the respective plane. The result of the proposed method is compared with that of other BTC based methods on RGB model and it shows a better performance both in the visual quality and compression ratio. Also the proposed method involves only less number of simple computations when compared with other BTC methods.


Color image compression HSV color model Block Truncation Coding k-means quad clustering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sangwine, S.J., Horne, R.E.: The Colour Image Processing Handbook, 1st edn. Chapman & Hall (1998)Google Scholar
  2. 2.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice Hall (2008)Google Scholar
  3. 3.
    Delp, E.J., Mitchell, O.R.: Image compression using block truncation coding. IEEE Trans. Commun. COM-27, 1335–1342 (1979)Google Scholar
  4. 4.
    Pennebaker, W.B., Mitchell, J.L.: JPEG Still Image Compression Standard Van Nostrand Reinhold, New York (1993)Google Scholar
  5. 5.
    Shappiro, J.M.: Embedded image coding using zero trees of wavelet coefficients. IEEE Trans. Signal Processing 41, 3445–3462 (1993)CrossRefGoogle Scholar
  6. 6.
    Lema, M.D., Mitchell, O.R.: Absolute moment block truncation coding and its application to color images. IEEE Trans. Commun. COM-32, 1148–1157 (1984)Google Scholar
  7. 7.
    Udpikar, V.R., Raina, J.P.: A modified algorithm for block truncation coding of monochrome images. Electron. Lett. 21-20, 900–902 (1985)Google Scholar
  8. 8.
    Hui, L.: An adaptive block truncation coding algorithm for image compression. In: Proc. ICASSP 1990, vol. 4, pp. 2233–2236 (1990)Google Scholar
  9. 9.
    Delp, E.J., Mitchell, O.R.: The use of block truncation coding in DPCM image coding. IEEE Trans. Signal Process. 39(4), 967–971 (1991)Google Scholar
  10. 10.
    Arce, G.R., Gallagher, N.C.: BTC image coding using median filter roots. IEEE Trans. Commun. 31(6), 784–793 (1983)Google Scholar
  11. 11.
    Zeng, B., Neuvo, Y., Venetsanopoulos, A.N., Interpolative, B.T.C.: image coding. In: Proc. IEEE ICASSP 1992, vol. 3, pp. 493–496 (1992)Google Scholar
  12. 12.
    Udpikar, V.R., Raina, J.P.: BTC image coding using vector quantization. IEEE Trans. Commun. 35(3), 352–356 (1987)CrossRefGoogle Scholar
  13. 13.
    Zeng, B., Neuvo, Y., Interpolative, B.T.C.: image coding with vector quantization. IEEE Trans. Commun. 41(10), 1436–1437 (1993)CrossRefMATHGoogle Scholar
  14. 14.
    Wu, Y., Coll, D.C.: BTC-VQ-DCT hybrid coding of digital images. IEEEE Trans. Commun. 39(9), 1283–1287 (1991)CrossRefGoogle Scholar
  15. 15.
    Wu, Y., Coll, D.C.: Single bit map block truncation coding for color image. IEEE Trans. Commun. COM-35, 352–356 (1987)Google Scholar
  16. 16.
    Kurita, T., Otsu, N.: A method of block truncation coding for color image compression. IEEE Trans. Commun. COM-35, 352–356 (1987)Google Scholar
  17. 17.
    Baxes, G.A.: Digital Image Processing – Principles and Applications. John Wiley & Sons, Inc. (1994)Google Scholar
  18. 18.
    Vellaikal, A., Jay Kuo, C.C., Dao, S.: Content-Based Retrieval of Color and Multispectral Images Using Joint Spatial-Spectral Indexing. In: SPIE, vol. 2606, pp. 232–243Google Scholar
  19. 19.
    Mathews, J., Nair, M.S., Jo, L.: Improved BTC Algorithm for Gray Scale Images using k-means Quad Clustering. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP 2012, Part IV. LNCS, vol. 7666, pp. 9–17. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Kanungo, T., Mount, D.M., Netanyahu, N., Piatko, C., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithm: Analysis and implementation. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 881–892 (2002)Google Scholar
  21. 21.
    Eskicioglu, A.M., Fisher, P.S.: Image quality measures and their performance. IEEE Trans. Communications 34, 2959–2965 (1995)CrossRefGoogle Scholar
  22. 22.
    Yamsang, N., Udomhunsakul, S.: Image Quality Scale (IQS) for compressed images quality measurement. In: Proceedings of the International Multiconference of Engineers and Computer Scientists, vol. 1, pp. 789–794 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of KeralaThiruvananthapuramIndia
  2. 2.Philips Electronics India LtdBangaloreIndia

Personalised recommendations