Real-Time Hard and Soft Shadow Compensation with Adaptive Patch Gradient Pairs

  • Muthukumar Subramanyam
  • Krishnan Nallaperumal
  • Ravi Subban
  • Pasupathi Perumalsamy
  • Shashikala Durairaj
  • S. Gayathri Devi
  • S. Selva Kumar
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 264)


This research emphasizes an approach toward real-time shadow compensation for dark/thick/hard and shallow/thin/soft shadows of captured scenes. While humans are very good at estimating objects size, position, color, environmental changes, movements irrespective of occlusions and noise and hence, are able to smoothly visualize the scene. But, computing machines often lack the ability to sense their environment, in a manner comparable to humans. This discrepancy prevents the automation of certain real-time jobs and the shadows make it more cumbersome. Therefore, enhancement of shadow detected region patches with suitable compensation might change object detection and scene visualization more plausible. The authors examine the patch in shadow and non-shadow regions and make the best similar patch pair. These pair characteristics are used to reconstruct both soft and hard shadow regions. However, the hard shadows do not have scene information below the shadow area, that is filled with adaptive gradient patch in-painting technique using close neighboring information. This proposed hybrid framework shows improvement in the overall image quality in terms of both qualitative and qualitative evaluations.


Hard shadow compensation shadow in-painting shadow extraction image reconstruction shadow restitution De-shadowing Image Enhancement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Xu, L.-Q., Landabaso, J.-L., Lei, B.: Segmentation and tracking of multiple moving objects for intelligent video analysis. BT Technology Journal 22(3), 140–150 (2004)CrossRefGoogle Scholar
  2. 2.
    Wang, J.-M., et al.: Shadow detection and removal for traffic images. In: 2004 IEEE International Conference on Networking, Sensing and Control, vol. 1. IEEE (2004)Google Scholar
  3. 3.
    Arbel, E., Hel-Or, H.: Texture-preserving shadow removal in color images containing curved surfaces. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007. IEEE (2007)Google Scholar
  4. 4.
    Bajcsy, R., Lieberman, L.: Texture gradient as a depth cue. Computer Graphics and Image Processing 5(1), 52–67 (1976)CrossRefGoogle Scholar
  5. 5.
    Rosin, P.L., Ellis, T.J.: Image difference threshold strategies and shadow detect Graphics and Image Processing 5(1), 52–67 (1976)Google Scholar
  6. 6.
    Jiang, C., Ward, M.O.: Shadow identification. In: Proceedings of the 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 1992. IEEE (1992)Google Scholar
  7. 7.
    Fredembach, C., Finlayson, G.: Hamiltonian path based shadow removal. In: Proceedings of 16th British Machine Vision Conference (BMVC), pp. 970–980 (2005)Google Scholar
  8. 8.
    Finlayson, G.D., Hordley, S.D., Drew, M.S.: Removing shadows from images. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part IV. LNCS, vol. 2353, pp. 823–836. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Salvador, E., Cavallaro, A., Ebrahimi, T.: Cast shadow segmentation using invariant color features. Comput. Vis. Image Underst. 95(2), 238–259 (2004)CrossRefGoogle Scholar
  10. 10.
    Levine, M.D., Bhattacharyya, J.: Removing shadows. Pattern Recogn. Lett. 26(3), 251–265 (2005)CrossRefGoogle Scholar
  11. 11.
    Ollis, M., Stentz, A.: Vision-based perception for an automated harvester. In: Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 1997, vol. 3. IEEE (1997)Google Scholar
  12. 12.
    Sato, I., Sato, Y., Ikeuchi, K.: Acquiring a radiance distribution to superimpose virtual objects onto a real scene. IEEE Transactions on Visualization and Computer Graphics 5(1), 1–12 (1999)CrossRefGoogle Scholar
  13. 13.
    McFeely, R., et al.: Removal of non-uniform complex and compound shadows from textured surfaces using adaptive directional smoothing and the thin plate model. Image Processing, IET 5(3), 233–248 (2011)CrossRefGoogle Scholar
  14. 14.
    Subban, R., Muthukumar, S., Pasupathi, P.: Image Restoration based on Scene Adaptive Patch In-painting for Tampered Natural Scenes. In: Thampi, S.M., Abraham, A., Pal, S.K., Rodriguez, J.M.C. (eds.) Recent Advances in Intelligent Informatics. AISC, vol. 235, pp. 65–72. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  15. 15.
    Muthukumar, S., Subban, R., Krishnan, N., Pasupathi, P.: Real time insignificant shadow extraction from natural sceneries. In: Thampi, S.M., Abraham, A., Pal, S.K., Rodriguez, J.M.C. (eds.) Recent Advances in Intelligent Informatics. AISC, vol. 235, pp. 391–399. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  16. 16.
    Hasenfratz, J.-M., et al.: A Survey of Real‐time Soft Shadows Algorithms. Computer Graphics Forum 22(4) (2003)Google Scholar
  17. 17.
    Zhu, G., et al.: Detecting video events based on action recognition in complex Scenes using spatio-temporal descriptor. In: Proceedings of the 17th ACM International Conference on Multimedia. ACM (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Muthukumar Subramanyam
    • 1
  • Krishnan Nallaperumal
    • 2
  • Ravi Subban
    • 3
  • Pasupathi Perumalsamy
    • 2
  • Shashikala Durairaj
    • 2
  • S. Gayathri Devi
    • 2
  • S. Selva Kumar
    • 2
  1. 1.Dept of CSENITPuducherryIndia
  2. 2.CITEMS UniversityTirunelveliIndia
  3. 3.Dept of CSEPondicherry UniversityPondicherryIndia

Personalised recommendations