Identification of Interface Information for a Virtual Data Integration

  • Konstantin Klein
  • Marco Franke
  • Karl A. Hribernik
  • Klaus-Dieter Thoben
Conference paper
Part of the Proceedings of the I-ESA Conferences book series (IESACONF, volume 7)


Nowadays, a production and logistics chain consists of many companies. The establishment of a robust information flow consists of the exchange of diverse information between the companies and its corresponding heterogenous IT-systems. By changing suppliers and logistic partners, the interfaces between their IT-systems have to be adapted. The adaption process is a complex and a time consuming process and it is a significant disturbance variable in the establishment of dynamic production and logistics chains. The time reduction to bind the relevant systems to one’s systems becomes more and more important. This gain of time benefits companies in relation of theirs competitors. But, the binding of heterogenous systems is not trivial. To bring data sources together, different data integration approaches have to be considered and challenging data integration problems have to be resolved. This includes e.g. the data sources have different meaning of the information, their structure and other context sensitive information. These facts leads to the important question: Which information about a data source is required and how it can be represented to enable an automated binding process of data sources. This paper explains why an exchange of interface information as a context information is important and how this exchange could look.


Virtual data integration Cyber physical systems Supply chains Logistics Context driven data source binding 



This article was written within the research project “Cyber-Physische Produktionssysteme—Produktivitäts- und Flexibilitätssteigerung durch die Vernetzung intelligenter Systeme in der Fabrik (CyProS)” and was sponsored by the Federal Ministry of Education and Research (BMBF) under support code 02PJ2460 to 02PJ2480.


  1. 1.
    Hribernik, K., Warden, T., Thoben, K.-D., & Herzog, O. (2010). An internet of things for transport logistics—an approach to connecting the information and material flows in autonomous cooperating logistics processes. In: Proceedings of the 12th international MITIP conference on information technology & innovation processes of the enterprises, pp. 54-67 (subprojects: C2, B4)Google Scholar
  2. 2.
    Fiala, P. (2005). Information sharing in supply chains, Omega, Bd. 33, Nr. 5, S. 419–423.Google Scholar
  3. 3.
    Hannus, M. (1996). Islands of automation in construction. In Ž. Turk (Ed.), Construction on the information highway, number 198 in CIB publication, p. 20. University of Ljubljana.Google Scholar
  4. 4.
    SFB637. (2013). Sonderforschungsbereich 637: Motivation. Verfügbar unter: [Zugegriffen: 20-Sep-2013].
  5. 5.
    BMBF. (2013). Industrie 4.0—Hightech-Strategie der Bundesregierung. Verfügbar unter: [Zugegriffen: 20-Sep-2013].
  6. 6.
    Broy, M. (2010). Cyber-Physical Systems—Wissenschaftliche Herausforderungen bei der Entwicklung, Cyber-Physical Systems, pp. 17–31.Google Scholar
  7. 7.
    Laender, A. H., Ribeiro-Neto, B. A., da Silva, A. S., & Teixeira, J. S. (2002). A brief survey of web data extraction tools. ACM Sigmod Record, 31(2), 84–93.CrossRefGoogle Scholar
  8. 8.
    Levy, A. Y. (2000). Logic-based techniques in data integration. In Logic-based artificial intelligence (pp. 575–595). Berlin, Heidelberg: Springer.Google Scholar
  9. 9.
    Wache, H. (2003). Semantische mediation für heterogene informationsquellen. KI, Bd. 17, Nr. 4, S. 56.Google Scholar
  10. 10.
    Doan, A., Halevy, A., & Ives, Z. (2012). Principles of data integration. Access online via Elsevier.Google Scholar
  11. 11.
    Rodon, J., Ramis-Pujol, J., & Christiaanse, E. (2007). A process-stakeholder analysis of B2B industry standardisation. Journal of Enterprise Information Management, 20(1), 83–95.CrossRefGoogle Scholar
  12. 12.
    Goh, C. H. (1996). Representing and reasoning about semantic conflicts in heterogeneous information systems, Citeseer.Google Scholar
  13. 13.
    Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer Networks, 54(15), 2787–2805.MATHCrossRefGoogle Scholar
  14. 14.
    Jayaram, J., & Tan, K.-C. (2010). Supply chain integration with third-party logistics providers. International Journal of Production Economics, 125(2), 262–271.CrossRefGoogle Scholar
  15. 15.
    Goh, C. H., Bressan, S., Madnick, S., & Siegel, M. (1999). Context interchange: New features and formalisms for the intelligent integration of information. ACM Transactions on Information Systems (TOIS), 17(3), 270–293.CrossRefGoogle Scholar
  16. 16.
    Ahmed, N., & Jensen, C. D. (2009). A mechanism for identity delegation at authentication level. In Identity and privacy in the internet age (pp. 148–162). New York: Springer.Google Scholar
  17. 17.
    Mortimore, C. (2013). JSON Web Token (JWT) Profile for OAuth 2.0 Client Authentication and Authorization Grants draft-ietf-oauth-jwt-bearer-06.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Konstantin Klein
    • 1
  • Marco Franke
    • 1
  • Karl A. Hribernik
    • 1
  • Klaus-Dieter Thoben
    • 2
  1. 1.BIBA - Bremer Institut für Produktion und Logistik GmbHBremenGermany
  2. 2.University of BremenBremenGermany

Personalised recommendations