Software Cost and Duration Estimation Based on Distributed Project Data: A General Framework

  • Safae Laqrichi
  • François Marmier
  • Didier Gourc
Conference paper
Part of the Proceedings of the I-ESA Conferences book series (IESACONF, volume 7)


Effort estimation is one of the most challenging tasks in the process of software project management. Enhancing the accuracy of effort estimation remains a serious problem for software professionals. Accurate estimation is difficult to achieve. The main difficulty is to collect distributed knowledge as data and information are often dispersed over different services, departments or organisations. Other main difficulty is to propose a model representative enough of this multi-partner behaviour. The objective of this study is to propose a general framework of the estimation starting from the analysis of the available projects database, the choice and establishment of estimation model, up to the use of this model to make estimation for new projects. In this paper, a comparative study between regression models and neural network models is performed. The proposed study is applied on a dataset of an automotive company.


Neural network Regression Duration estimation Cost estimation Comparison 



This work has been funded by the Fund Unique Interministerial (FUI) through the project Projestimate. We wish to acknowledge our gratitude and appreciation to all project partners for their contribution.


  1. 1.
    Jørgensen, M. (2004). A review of studies on expert estimation of software development effort. Journal of Systems and Software, 70(1), 37–60.CrossRefGoogle Scholar
  2. 2.
    Boehm, B. (2000). Software cost estimation with cocomo II. New Jersey: Prentice-Hall.Google Scholar
  3. 3.
    Pillai K., & Sukumaran Nair, V. S. (1997). A model for software development effort and cost estimation. IEEE Transactions on Software Engineering, 23(8), 485–497.Google Scholar
  4. 4.
    Heemstra, F. J. (1992). Software cost estimation. Information and Software Technology, 34(10), 627–639.CrossRefGoogle Scholar
  5. 5.
    Dave, V. S., & Dutta, K. (2012). Neural network based models for software effort estimation: A review. Artificial Intelligence Review, 1–13.Google Scholar
  6. 6.
    Laqrichi, S., Marmier, F., & Gourc, D. (2013). Toward an effort estimation model for information system project integrating risk. In International Conference on Production Research (ICPR22) Google Scholar
  7. 7.
    Idri, A. (2003). Un modèle intelligent d’estimation des coûts de développement de logiciels, Université du Québec à Montréal.Google Scholar
  8. 8.
    Boehm, B. W. (1981). Software engineering economics. Upper Saddle River: Prentice Hall.MATHGoogle Scholar
  9. 9.
    Basha, S., & Ponnurangam, D. (2010). Analysis of empirical software effort estimation models, International Journal of Computer Science and Information Security IJCSIS, 7(3), 68–77.Google Scholar
  10. 10.
    Kok, P. A. M., Kitchenham, D. B. A., & Kirawkowski, D. J. (1990). The MERMAID Approach to software cost estimation, In ESPRIT’90 (pp. 296–314). Netherlands: Springer.Google Scholar
  11. 11.
    Sentas, P., Angelis, L., Stamelos, I. & Bleris, G. (2005). Software productivity and effort prediction with ordinal regression. Information and Software Technology, 47(1), 17–29.Google Scholar
  12. 12.
    Haykin, S. S. (1999). Neural networks: A comprehensive foundation. Upper Saddle River: Prentice Hall International.Google Scholar
  13. 13.
    de Barcelos Tronto, I. F., Da Silva, J. D. S., & Sant’Anna, N. (2007). Comparison of artificial neural network and regression models in software effort estimation. International Joint Conference on Neural Networks IJCNN 2007, (pp. 771–776).Google Scholar
  14. 14.
    Idri, A., Khoshgoftaar, T. M., & Abran, A. Can neural networks be easily interpreted in software cost estimation?. Proceedings of the 2002 IEEE International Conference on Fuzzy Systems FUZZ-IEEE’02, 2, 1162–1167.Google Scholar
  15. 15.
    Idri, A., Zakrani, A. & Zahi, A. (2010). Design of radial basis function neural networks for software effort estimation. International Journal of Computer Science Issues, 7(4), 11.Google Scholar
  16. 16.
    Finnie, G. R., Wittig, G. E. & Desharnais, J.-M. (1997). A comparison of software effort estimation techniques: Using function points with neural networks, case-based reasoning and regression models. Journal of Systems and Software, 39(3), 281–289.Google Scholar
  17. 17.
    Heiat, A. (2002). Comparison of artificial neural network and regression models for estimating software development effort. Information and Software Technology, 44(15), 911–922.CrossRefGoogle Scholar
  18. 18.
    Huang, S.-J., Chiu, N.-H., & Liu, Y.-J. (2008). A comparative evaluation on the accuracies of software effort estimates from clustered data. Information and Software Technology, 50(9–10), 879–888.Google Scholar
  19. 19.
    Neto, A. M., Rittner, L., Leite, N., Zampieri, D. E., Lotufo, R. & Mendeleck, A. (2007). Pearson’s correlation coefficient for discarding redundant information in real time autonomous navigation system. In IEEE International Conference on Control Applications. CCA 2007, (pp. 426–431).Google Scholar
  20. 20.
    Refaeilzadeh, P., Tang, L., & Liu, H. (2009) Cross-validation. In L. Liu & T. Özsu (Eds.), Encyclopedia of database systems (pp. 532–538). New York, USA: Springer.Google Scholar
  21. 21.
    Boetticher, G. (2001). An assessment of metric contribution in the construction of a neural network-based effort estimator. In Second International Workshop on Soft Computing Applied to Software Engineering, Enschede, NL, 2001.Google Scholar
  22. 22.
    Karlik, B. & Olgac, A. V. (2011). Performance analysis of various activation functions in generalized MLP architectures of neural networks. International Journal of Artificial Intelligence and Expert Systems, 1(4), 111–122.Google Scholar
  23. 23.
    Moores, T. T. (2001). Developing a software size model for rule-based systems: A case study. Expert Systems with Applications, 21(4), 229–237.Google Scholar
  24. 24.
    Kemerer, C. F. (1987). An empirical validation of software cost estimation models. Communications of the ACM, 30(5), 416–429.CrossRefGoogle Scholar
  25. 25.
    Garavaglia, S., & Sharma, A. (1998). A smart guide to dummy variables: Four applications and a macro. Proceedings of the Northeast SAS Users Group Conference.Google Scholar
  26. 26.
    Gelman, A. (2005). Analysis of variance: Why it is more important than ever. Annals of Statistics, 33, 1–53.Google Scholar
  27. 27.
    Boetticher, G., & Eichmann, D. (1993). A neural network paradigm for characterizing reusable software. Proceedings of the first Australian Conference on Software Metrics, (pp. 18–19).Google Scholar
  28. 28.
    Marmier, F., Gourc, D. & Laarz, F. (2013). A risk oriented model to assess strategic decisions in new product development projects. Decision Support Systems, 56, 74–82Google Scholar
  29. 29.
    Nguyen, T. H., Marmier, F. & Gourc, D. (2013). A decision-making tool to maximize chances of meeting project commitments. International Journal of Production Economics. 142(2), 214–224Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Safae Laqrichi
    • 1
  • François Marmier
    • 1
  • Didier Gourc
    • 1
  1. 1.Mines AlbiUniversity of ToulouseAlbi Cedex 09France

Personalised recommendations