Advertisement

Introduction to Smart Grids

  • Hongwei Li
Chapter
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)

Abstract

Lack of effective real-time diagnosis and healing, the traditional power grid is sporadically suffering from failures and blackouts. For example, on August 14, 2003, power system outage affected large portions of the north eastern U.S. and Canada, which ultimately caused a $6 billion loss in economic revenue [1]. Recently, smart grids have emerged as a promising solution to the next generation power grid system 2]. It utilizes information and communications technology to gather and act on information, such as the behavior of suppliers and consumers in an automated fashion to improve the reliability, efficiency, economics, and sustainability of the generation and distribution of electricity [3].

Keywords

Smart Grid Authentication Scheme Demand Response Privacy Preservation Homomorphic Encryption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
  2. 2.
    H. Liang, B. Choi, W. Zhuang, and X. Shen, “Towards optimal energy store-carry-and-deliver for phevs via v2g system,” in IEEE INFOCOM, 2012, pp. 1674–1682.Google Scholar
  3. 3.
    H. Liang, B. Choi, A. Abdrabou, W. Zhuang, and X. Shen, “Decentralized economic dispatch in microgrids via heterogeneous wireless networks,” IEEE Journal on Selected Areas in Communications, vol. 30, no. 6, pp. 1061–1074, 2012.CrossRefGoogle Scholar
  4. 4.
    “Nist framework and roadmap for smart grid interoperability standards,” Release 1.0, NIST Special Publication 1108, pp. 1–145, 2010.Google Scholar
  5. 5.
    D. He, C. Chen, J. Bu, S. Chan, Y. Zhang, and M. Guizani, “Secure service provision in smart grid communications,” IEEE Communications Magazine, vol. 50, no. 8, pp. 53–61, 2012.CrossRefGoogle Scholar
  6. 6.
  7. 7.
    J. Wang, C. N. Bloyd, Z. Hu, and Z. Tan, “Demand response in China,” Energy, vol. 35, no. 4, pp. 1592–1597, 2010.CrossRefGoogle Scholar
  8. 8.
  9. 9.
    J. Liu, Y. Xiao, S. Li, W. Liang, and C. Chen, “Cyber security and privacy issues in smart grids,” IEEE Communications Surveys & Tutorials, vol. 14, no. 4, pp. 981–997, 2012.CrossRefGoogle Scholar
  10. 10.
    W. Wang and Z. Lu, “Cyber security in the smart grid: Survey and challenges,” Computer Networks, vol. 57, no. 5, pp. 1344–1371, 2013.CrossRefGoogle Scholar
  11. 11.
    Y. Mo, T.-J. Kim, K. Brancik, D. Dickinson, H. Lee, A. Perrig, and B. Sinopoli, “Cyber–physical security of a smart grid infrastructure,” Proceedings of the IEEE, vol. 100, no. 1, pp. 195–209, 2012.CrossRefGoogle Scholar
  12. 12.
    F. Rahimi and A. Ipakchi, “Demand response as a market resource under the smart grid paradigm,” IEEE Transactions on Smart Grid, vol. 1, no. 1, pp. 82–88, 2010.CrossRefGoogle Scholar
  13. 13.
    X. Li, X. Liang, R. Lu, H. Zhu, X. Lin, and X. Shen, “Securing smart grid: Cyber attacks, countermeasures and challenges,” IEEE Communications Magazine, vol. 58, no. 8, pp. 38–45, 2012.CrossRefGoogle Scholar
  14. 14.
    X. Liang, X. Li, R. Lu, X. Lin, and X. Shen, “Udp: Usage-based dynamic pricing with privacy preservation for smart grid,” IEEE Transactions on Smart Grid, vol. 4, no. 1, pp. 141–150, 2013.CrossRefGoogle Scholar
  15. 15.
    H. Li, X. Liang, R. Lu, X. Lin, and X. Shen, “Edr: An efficient demand response scheme for achieving forward secrecy in smart grid,” in IEEE GLOBECOM, 2012, pp. 929–934.Google Scholar
  16. 16.
    H. Li, R. Lu, L. Zhou, B. Yang, and X. Shen, “An efficient merkle tree based authentication scheme for smart grid,” IEEE Systems Journal, http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6563123.
  17. 17.
    F. Li, B. Luo, and P. Liu, “Secure information aggregation for smart grids using homomorphic encryption,” in 2010 IEEE International Conference on Smart Grid Communications (SmartGridComm), 2010, pp. 327–332.Google Scholar
  18. 18.
    R. Lu, X. Liang, X. Li, X. Lin, and X. Shen, “Eppa: An efficient and privacy preserving aggregation scheme for secure smart grid communications,” IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 9, pp. 1621–1631, 2012.CrossRefGoogle Scholar
  19. 19.
    M. Fouda, Z. Fadlullah, N. Kato, R. Lu, and X. Shen, “A lightweight message authentication scheme for smart grid communications,” IEEE Transactions on Smart Grid, vol. 2, no. 4, pp. 675–685, 2011.CrossRefGoogle Scholar
  20. 20.
    H. Li, X. Lin, H. Yang, X. Liang, R. Lu, and X. Shen, “Eppdr: An efficient privacy-preserving demand response scheme with adaptive key evolution in smart grid,” IEEE Transactions on Parallel and Distributed Systems, http://www.computer.org/csdl/trans/td/preprint/06506075-abs.html.
  21. 21.
    H. Liu, H. Ning, Y. Zhang, and L. Yang, “Aggregated-proofs based privacy-preserving authentication for v2g networks in smart grid,” IEEE Transactions on Smart Grid, vol. 3, no. 4, pp. 1722–1733, 2012.CrossRefGoogle Scholar
  22. 22.
    M. Wen, R. Lu, K. Zhang, J. Lei, X. Liang, and X. Shen, “Parq: A privacy- preserving range query scheme over encrypted metering data for smart grid,” IEEE Transactions on Emerging Topics in Computing, vol. 1, no. 1, pp. 178–191, 2013.CrossRefGoogle Scholar
  23. 23.
    “Introduction to nistir 7628 guidelines for smart grid cyber security,” Available: http://www.nist.gov/smartgrid/upload//nistir-7628$_-$total.pdf, 2010.
  24. 24.
    D. Kang, B. Kim, and D. Hur, “Supplier bidding strategy based on non-cooperative game theory concepts in single auction power pools,” Electric power systems research, vol. 77, no. 5, pp. 630–636, 2007.CrossRefGoogle Scholar
  25. 25.
    M. Wen, R. Lu, J. Lei, H. Li, X. Liang, and X. Shen, “Sesa:an efficient searchable encryption scheme for auction in emerging smart grid marketing,” Security and Communication Networks, http://onlinelibrary.wiley.com/doi/10.1002/sec.699/full, 2013.
  26. 26.
    P. Paillier, “Public-key cryptosystems based on composite degree residuosity classes,” in EUROCRYPT, 1999, pp. 223–238.Google Scholar
  27. 27.
    D. Boneh and M. K. Franklin, “Identity-based encryption from the weil pairing,” in CRYPTO, 2001, pp. 213–229.Google Scholar
  28. 28.
    B. Libert and J. Quisquater, “The exact security of an identity based signature and its applications,” Preprint available at http://eprint.iacr.org/2004/102, 2004.
  29. 29.
    R. Rivest, “Rfc 1321: The md5 message-digest algorithm,” Internet activities board, vol. 143, 1992.Google Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Hongwei Li
    • 1
  1. 1.University of Electronic Science and Technology of ChinaChengduPeople’s Republic of China

Personalised recommendations