Skip to main content

EHC: Non-parametric Editing by Finding Homogeneous Clusters

  • Conference paper
Foundations of Information and Knowledge Systems (FoIKS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8367))

Abstract

Editing is a crucial data mining task in the context of k-Nearest Neighbor classification. Its purpose is to improve classification accuracy by improving the quality of training datasets. To obtain such datasets, editing algorithms try to remove noisy and mislabeled data as well as smooth the decision boundaries between the discrete classes. In this paper, a new fast and non-parametric editing algorithm is proposed. It is called Editing through Homogeneous Clusters (EHC) and is based on an iterative execution of a clustering procedure that forms clusters containing items of a specific class only. Contrary to other editing approaches, EHC is independent of input (tuning) parameters. The performance of EHC is experimentally compared to three state-of-the-art editing algorithms on ten datasets. The results show that EHC is faster than its competitors and achieves high classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach. Learn. 6(1), 37–66 (1991), http://dx.doi.org/10.1023/A:1022689900470

    Google Scholar 

  2. Alcalá-Fdez, J., Fernández, A., Luengo, J., Derrac, J., García, S.: Keel data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework. Multiple-Valued Logic and Soft Computing 17(2-3), 255–287 (2011)

    Google Scholar 

  3. Barandela, R., Gasca, E.: Decontamination of training samples for supervised pattern recognition methods. In: Ferri, F.J., Iñesta, J.M., Amin, A., Pudil, P. (eds.) SSPR&SPR 2000. LNCS, vol. 1876, pp. 621–630. Springer, Heidelberg (2000)

    Google Scholar 

  4. Brighton, H., Mellish, C.: Advances in instance selection for instance-based learning algorithms. Data Min. Knowl. Discov. 6(2), 153–172 (2002), http://dx.doi.org/10.1023/A:1014043630878

    Article  MATH  MathSciNet  Google Scholar 

  5. Dasarathy, B.V.: Nearest neighbor (NN) norms: NN pattern classification techniques. IEEE Computer Society Press (1991)

    Google Scholar 

  6. Dasarathy, B.V., Snchez, J.S., Townsend, S.: Nearest neighbour editing and condensing tools synergy exploitation. Pattern Analysis & Applications 3(1), 19–30 (2000), http://dx.doi.org/10.1007/s100440050003

    Article  Google Scholar 

  7. Devijver, P.A., Kittler, J.: On the edited nearest neighbor rule. In: Proceedings of the Fifth International Conference on Pattern Recognition. The Institute of Electrical and Electronics Engineers (1980)

    Google Scholar 

  8. Garcia, S., Derrac, J., Cano, J., Herrera, F.: Prototype selection for nearest neighbor classification: Taxonomy and empirical study. IEEE Trans. Pattern Anal. Mach. Intell. 34(3), 417–435 (2012), http://dx.doi.org/10.1109/TPAMI.2011.142

    Article  Google Scholar 

  9. García-Borroto, M., Villuendas-Rey, Y., Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F.: Using maximum similarity graphs to edit nearest neighbor classifiers. In: Bayro-Corrochano, E., Eklundh, J.-O. (eds.) CIARP 2009. LNCS, vol. 5856, pp. 489–496. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Grochowski, M., Jankowski, N.: Comparison of instance selection algorithms ii. results and comments. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 580–585. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques. The Morgan Kaufmann Series in Data Management Systems. Elsevier Science (2011)

    Google Scholar 

  12. Hattori, K., Takahashi, M.: A new edited k-nearest neighbor rule in the pattern classification problem. Pattern Recognition 33(3), 521–528 (2000), http://www.sciencedirect.com/science/article/pii/S0031320399000680

    Article  Google Scholar 

  13. Grochowski, M., Jankowski, N.: Comparison of instances seletion algorithms i. algorithms survey. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 598–603. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Jiang, Y., Zhou, Z.-H.: Editing training data for knn classifiers with neural network ensemble. In: Yin, F.-L., Wang, J., Guo, C. (eds.) ISNN 2004. LNCS, vol. 3173, pp. 356–361. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Lozano, M.: Data Reduction Techniques in Classification processes (Phd Thesis). Universitat Jaume I (2007)

    Google Scholar 

  16. McQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proc. of 5th Berkeley Symp. on Math. Statistics and Probability, pp. 281–298. University of California Press, Berkeley (1967)

    Google Scholar 

  17. Olvera-López, J.A., Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Kittler, J.: A review of instance selection methods. Artif. Intell. Rev. 34(2), 133–143 (2010), http://dx.doi.org/10.1007/s10462-010-9165-y

    Article  Google Scholar 

  18. Ougiaroglou, S., Evangelidis, G.: Efficient dataset size reduction by finding homogeneous clusters. In: Proceedings of the Fifth Balkan Conference in Informatics, BCI 2012, pp. 168–173. ACM, New York (2012), http://doi.acm.org/10.1145/2371316.2371349

    Google Scholar 

  19. Ougiaroglou, S., Nanopoulos, A., Papadopoulos, A.N., Manolopoulos, Y., Welzer-Druzovec, T.: Adaptive k-nearest-neighbor classification using a dynamic number of nearest neighbors. In: Ioannidis, Y., Novikov, B., Rachev, B. (eds.) ADBIS 2007. LNCS, vol. 4690, pp. 66–82. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Sánchez, J.S., Barandela, R., Marqués, A.I., Alejo, R., Badenas, J.: Analysis of new techniques to obtain quality training sets. Pattern Recogn. Lett. 24(7), 1015–1022 (2003), http://dx.doi.org/10.1016/S0167-86550200225-8

    Google Scholar 

  21. Segata, N., Blanzieri, E., Delany, S.J., Cunningham, P.: Noise reduction for instance-based learning with a local maximal margin approach. J. Intell. Inf. Syst. 35(2), 301–331 (2010), http://dx.doi.org/10.1007/s10844-009-0101-z

    Article  Google Scholar 

  22. Snchez, J., Pla, F., Ferri, F.: On the use of neighbourhood-based non-parametric classifiers. Pattern Recognition Letters 18(11–13), 1179–1186 (1997), http://www.sciencedirect.com/science/article/pii/S0167865597001128

    Article  Google Scholar 

  23. Snchez, J., Pla, F., Ferri, F.: Prototype selection for the nearest neighbour rule through proximity graphs. Pattern Recognition Letters 18(6), 507–513 (1997), http://www.sciencedirect.com/science/article/pii/S0167865597000354

    Article  Google Scholar 

  24. Tomek, I.: An experiment with the edited nearest-neighbor rule. IEEE Transactions on Systems, Man, and Cybernetics 6, 448–452 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  25. Toussaint, G.: Proximity graphs for nearest neighbor decision rules: Recent progress. In: 34th Symposium on the INTERFACE, pp. 17–20 (2002)

    Google Scholar 

  26. Triguero, I., Derrac, J., Garcia, S., Herrera, F.: A taxonomy and experimental study on prototype generation for nearest neighbor classification. Trans. Sys. Man Cyber Part C 42(1), 86–100 (2012), http://dx.doi.org/10.1109/TSMCC.2010.2103939

    Article  Google Scholar 

  27. Vázquez, F., Sánchez, J.S., Pla, F.: A stochastic approach to wilson’s editing algorithm. In: Marques, J.S., de la Pérez Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3523, pp. 35–42. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  28. Wilson, D.R., Martinez, T.R.: Reduction techniques for instance-basedlearning algorithms. Mach. Learn. 38(3), 257–286 (2000), http://dx.doi.org/10.1023/A:1007626913721

    Article  MATH  Google Scholar 

  29. Wilson, D.L.: Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans. on Systems, Man, and Cybernetics 2(3), 408–421 (1972)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ougiaroglou, S., Evangelidis, G. (2014). EHC: Non-parametric Editing by Finding Homogeneous Clusters. In: Beierle, C., Meghini, C. (eds) Foundations of Information and Knowledge Systems. FoIKS 2014. Lecture Notes in Computer Science, vol 8367. Springer, Cham. https://doi.org/10.1007/978-3-319-04939-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04939-7_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04938-0

  • Online ISBN: 978-3-319-04939-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics