Skip to main content

Brain Function: Novel Technologies Driving Novel Understanding

  • Chapter
  • First Online:

Abstract

The central nervous system of mammals is among the most elaborate structures in nature. For example, the cerebral cortex, which is involved in perception, motor control, attention, and memory, is organized in horizontal layers, each of astonishing complexity (Jones and Peters 1990). One cubic millimeter of mammalian neocortex contains about 100,000 neurons (Meyer et al. 2010). Each neuron receives on the order of 20,000 synapses and communicates with tens to hundreds of other cells in an extraordinarily complex and highly interwoven cellular network. Moreover, neurons are remarkably diverse in terms of their morphology, electrical properties, connectivity, and neurotransmitter phenotype.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aquino D, Schönle A, Geisler C, Middendorff CV, Wurm CA, Okamura Y et al (2011) Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores. Nat Methods 8:353–359

    CAS  PubMed  Google Scholar 

  • Belitski A, Gretton A, Magri C, Murayama Y, Montemurro MA, Logothetis NK, Panzeri S (2008) Low-frequency local field potentials and spikes in primary visual cortex convey independent visual information. J Neurosci 28:5696–5709

    CAS  PubMed  Google Scholar 

  • Beltramo R, D’Urso G, Dal Maschio M, Farisello P, Bovetti S, Clovis Y, Lassi G, Tucci V, De Pietri Tonelli D, Fellin T (2013) Layer-specific excitatory circuits differentially control recurrent network dynamics in the neocortex. Nat Neurosci 16:227–234

    CAS  PubMed  Google Scholar 

  • Berdondini L, Overstolz T et al (2001) High-density microelectrode arrays for electrophysiological activity imaging of neuronal networks. In: ICECS: The 8th IEEE international conference on electronics, circuits and systems, Malta

    Google Scholar 

  • Berdondini L, Imfeld K et al (2009) Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab Chip 9:2644–2651

    CAS  PubMed  Google Scholar 

  • Bethge P, Chéreau R, Avignone E, Marsicano G, Nägerl UV (2013) Two-photon excitation STED microscopy in two colors in acute brain slices. Biophys J 104(4):778–785

    CAS  PubMed Central  PubMed  Google Scholar 

  • Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645

    CAS  PubMed  Google Scholar 

  • Bianchini P, Harke B, Galiani S, Vicidomini G, Diaspro A (2012) Single-wavelength two-photon excitation-stimulated emission depletion (SW2PE-STED) superresolution imaging. Proc Natl Acad Sci USA 109(17):6390–6393

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blum RA, Ross JD et al (2007) An integrated system for simultaneous, multichannel neuronal stimulation and recording. IEEE Trans Circuits Syst I Regul Pap 54:2608–2618

    Google Scholar 

  • Borst JG, Helmchen F (1998) Calcium influx during an action potential. Methods Enzymol 293:352–371

    CAS  PubMed  Google Scholar 

  • Bottino E, Massobrio P et al (2009) Low-noise low-power CMOS preamplifier for multisite extracellular neuronal recordings. Microelectron J 40:1779–1787

    CAS  Google Scholar 

  • Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263–8

    CAS  PubMed  Google Scholar 

  • Buzsaki G (2004) Large-scale recording of neuronal ensembles. Nat Neurosci 7:446–451

    CAS  PubMed  Google Scholar 

  • Buzsaki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13:407–420

    CAS  PubMed  Google Scholar 

  • Cai N, Gong Y et al (2008) Adhesion dynamics of porcine esophageal fibroblasts on extracellular matrix protein-functionalized poly(lactic acid). Biomed Mater 3:015014

    PubMed  Google Scholar 

  • Cella Zanacchi F, Lavagnino Z, Perrone Donnorso M, Del Bue A, Furia L, Faretta M, Diaspro A (2011) Live-cell 3D super-resolution imaging in thick biological samples. Nat Methods 8:1047–1049

    PubMed  Google Scholar 

  • Cella Zanacchi F, Lavagnino Z, Faretta M, Furia L, Diaspro A (2013) Light-sheet confined super-resolution using two-photon photoactivation. PLoS One 8:e67667. doi:10.1371/journal.pone.0067667

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chow BY, Han X, Dobry AS, Qian X, Chuong AS, Li M, Henninger MA, Belfort GM, Lin Y, Monahan PE, Boyden ES (2010) High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463:98–102

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dabrowski W, Grybos P et al (2004) A low noise multichannel integrated circuit for recording neuronal signals using microelectrode arrays. Biosens Bioelectron 19:749–761

    CAS  PubMed  Google Scholar 

  • Dal Maschio M, Difato F, Beltramo R, Blau A, Benfenati F, Fellin T (2010) Simultaneous two-photon imaging and photo-stimulation with structured light illumination. Opt Express 18:18720–18731

    CAS  PubMed  Google Scholar 

  • Dal Maschio M, De Stasi AM, Benfenati F, Fellin T (2011) Three dimensional in vivo scanning microscopy with inertia-free focus control. Opt Lett 36:3503–05

    PubMed  Google Scholar 

  • Dal Maschio M, Ghezzi D, Bony G, Alabastri A, Deidda G, Brondi M, Sato SS, Zaccaria RP, Di Fabrizio E, Ratto GM, Cancedda L (2012) High-performance and site-directed in utero electroporation by a triple-electrode probe. Nat Commun 3:960

    PubMed  Google Scholar 

  • De Angelis F, Patrini M et al (2008) A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules. Nano Lett 8:2321–2327

    PubMed  Google Scholar 

  • De Angelis F, Das G et al (2010) Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. Nat Nano 5:67–72

    Google Scholar 

  • De Angelis F, Liberale C et al (2011) Emerging fabrication techniques for 3D nano-structuring in plasmonics and single molecule studies. Nanoscale 3:2689–2696

    PubMed  Google Scholar 

  • De Angelis F, Malerba M et al (2013) 3D hollow nanostructures as building blocks for multifunctional plasmonics. Nano Lett 13:3553–3558

    PubMed  Google Scholar 

  • Denk W, Svoboda K (1997) Photon upmanship: why multiphoton imaging is more than a gimmick. Neuron 18:351–357

    CAS  PubMed  Google Scholar 

  • Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    CAS  PubMed  Google Scholar 

  • Diaspro A (2001) Confocal and two-photon microscopy: foundations, applications, and advances. Wiley-Liss, New York

    Google Scholar 

  • Diaspro A (2010a) Optical fluorescence microscopy: from the spectral to the nano dimension. Springer, Heidelberg, pp 1–244

    Google Scholar 

  • Diaspro A (2010b) Nanoscopy and multidimensional optical fluorescence microscopy. Chapman and Hall/CRC, London

    Google Scholar 

  • Ding J, Takasaki K, Sabatini B (2009) Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy. Neuron 63:429–437

    CAS  PubMed Central  PubMed  Google Scholar 

  • Einevoll GT, Kayser C, Logothetis NK, Panzeri S (2013) Modelling and analysis of local field potential for studying the function of cortical circuits. Nat Rev Neurosci 14:770–785

    CAS  PubMed  Google Scholar 

  • Eversmann B, Jenkner M et al (2003) A 128x128 CMOS biosensor array for extracellular recording of neural activity. IEEE J Solid State Circuits 38:2306–2317

    Google Scholar 

  • Fellin T (2009) Communication between neurons and astrocytes: relevance to the modulation of synaptic and network activity. J Neurochem 108:533–544

    CAS  PubMed  Google Scholar 

  • Fendyur A, Spira ME (2012) Toward on-chip, in-cell recordings from cultured cardiomyocytes by arrays of gold mushroom-shaped microelectrodes. Front Neuroeng 5:21

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferrea E, Maccione A et al (2012) Large-scale, high-resolution electrophysiological imaging of field potentials in brain slices with microelectronic multielectrode arrays. Front Neural Circuits 6:80

    CAS  PubMed Central  PubMed  Google Scholar 

  • Field GD, Gauthier JL et al (2010) Functional connectivity in the retina at the resolution of photoreceptors. Nature 467:673–654

    CAS  PubMed Central  PubMed  Google Scholar 

  • Folling J, Bossi M, Bock H, Medda R, Wurm CA, Hein B, Jakobs S, Eggeling C, Hell SW (2008) Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat Methods 11:943–945

    Google Scholar 

  • Galiani S, Harke B, Vicidomini G, Lignani G, Benfenati F, Diaspro A, Bianchini P (2012) Strategies to maximize the performance of a STED microscope. Opt Express 20(7):7362–7374

    PubMed  Google Scholar 

  • Garofalo M, Nieus T et al (2009) Evaluation of the performance of information theory-based methods and cross-correlation to estimate the functional connectivity in cortical networks. PLoS One 4:e6482

    PubMed Central  PubMed  Google Scholar 

  • Gobel W, Kampa BM, Helmchen F (2007) Imaging cellular network dynamics in three dimensions using fast 3D laser scanning. Nat Methods 4:73–79

    PubMed  Google Scholar 

  • Gould TJ, Burke D, Bewersdorf J, Booth MJ (2012) Adaptive optics enables 3D STED microscopy in aberrating specimens. Opt Express 20(19):20998–21009

    PubMed Central  PubMed  Google Scholar 

  • Gradinaru V, Thompson KR, Deisseroth K (2008) eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol 36:129–139

    PubMed Central  PubMed  Google Scholar 

  • Gradinaru V, Zhang F, Ramakrishnan C, Mattis J, Prakash R, Diester I, Goshen I, Thompson KR, Deisseroth K (2010) Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141:154–165

    CAS  PubMed  Google Scholar 

  • Grybos P, Kmon P et al (2011) 64 Channel neural recording amplifier with tunable bandwidth in 180 nm CMOS technology. Metrol Meas Syst 18:631–643

    Google Scholar 

  • Hai A, Spira ME (2012) On-chip electroporation, membrane repair dynamics and transient in-cell recordings by arrays of gold mushroom-shaped microelectrodes. Lab Chip 12:2865–2873

    CAS  PubMed  Google Scholar 

  • Hai A, Kamber D et al (2009) Changing gears from chemical adhesion of cells to flat substrata toward engulfment of micro-protrusions by active mechanisms. J Neural Eng 6:066009

    PubMed  Google Scholar 

  • Hai A, Shappir J et al (2010) In-cell recordings by extracellular microelectrodes. Nat Methods 7:200–250

    CAS  PubMed  Google Scholar 

  • Haydon PG (2001) GLIA: listening and talking to the synapse. Nat Rev Neurosci 2:185–193

    CAS  PubMed  Google Scholar 

  • Heer F, Franks W et al (2004) CMOS microelectrode array for the monitoring of electrogenic cells. Biosens Bioelectron 20:358–366

    CAS  PubMed  Google Scholar 

  • Hell SW (2007) Far-field optical nanoscopy. Science 316(5828):1153–1158

    CAS  PubMed  Google Scholar 

  • Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782

    CAS  PubMed  Google Scholar 

  • Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940

    CAS  PubMed  Google Scholar 

  • Helmchen F, Imoto K, Sakmann B (1996) Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. Biophys J 70:1069–1081

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hess ST, Girirajan TP, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hierlemann A, Frey U et al (2011) Growing cells atop microelectronic chips: interfacing electrogenic cells in vitro with CMOS-based microelectrode arrays. Proc IEEE 99:252–284

    CAS  Google Scholar 

  • Imfeld K, Neukom S et al (2008) Large-scale, high-resolution data acquisition system for extracellular recording of electrophysiological activity. IEEE Trans Biomed Eng 55:2064–2073

    PubMed  Google Scholar 

  • Jochum T, Denison T et al (2009) Integrated circuit amplifiers for multi-electrode intracortical recording. J Neural Eng 6(1):012001

    PubMed  Google Scholar 

  • Jones EG, Peters A (eds) (1990) Cerebral cortex. Comparative structure and evolution of cerebral cortex, vol 8A. Plenum, New York, pp 269–283

    Google Scholar 

  • Kayser C, Montemurro MA, Logothetis NK, Panzeri S (2009) Auditory information coding is boosted by nested spike-phase and spike-pattern codes. Neuron 61:597–608

    CAS  PubMed  Google Scholar 

  • Kayser C, Ince RAA, Panzeri S (2012) Analysis of slow (theta) oscillations as a potential temporal reference frame for information coding in sensory cortices. PLoS Comput Biol 8(10):e1002717

    CAS  PubMed Central  PubMed  Google Scholar 

  • Korotchenko S, Cella F, Diaspro A, Dityatev A (2014) Zooming in on the (peri)synaptic extracellular matrix. In: Antoine T, Valentine N (eds) Nanoscale imaging of synapses, vol 84. Humana, Totowa, NJ, pp 220–230

    Google Scholar 

  • Looger LL, Griesbeck O (2012) Genetically encoded neural activity indicators. Curr Opin Neurobiol 22:18–23

    CAS  PubMed  Google Scholar 

  • Maccione A, Gandolfo M et al (2010) Experimental investigation on spontaneously active hippocampal cultures recorded by means of high-density MEAs: analysis of the spatial resolution effects. Front Neuroeng 3:4

    PubMed Central  PubMed  Google Scholar 

  • Maccione A, Garofalo M et al (2012) Multiscale functional connectivity estimation on low-density neuronal cultures recorded by high-density CMOS micro electrode arrays. J Neurosci Methods 207:161–171

    PubMed  Google Scholar 

  • Martiradonna L, Quarta L, Sileo L, Schertel A, Maccione A, Simi A, Dante S, Scarpellini A, Berdondini L, De Vittorio M (2012) Beam induced deposition of 3D electrodes to improve coupling to cells. Microelectron Eng 97:365–368

    CAS  Google Scholar 

  • Maynard EM, Nordhausen CT et al (1997) The Utah intracortical electrode array: a recording structure for potential brain-computer interfaces. Electroencephalogr Clin Neurophysiol 102:228–239

    CAS  PubMed  Google Scholar 

  • Mazzoni A, Panzeri S, Logothetis NK, Brunel N (2008) Encoding of naturalistic stimuli by local field potential spectra in networks of excitatory and inhibitory neurons. PLoS Comput Biol 4:e1000239

    PubMed Central  PubMed  Google Scholar 

  • Meyer HS, Wimmer VC, Oberlaender M, de Kock CP, Sakmann B, Helmstaedter M (2010) Number and laminar distribution of neurons in a thalamocortical projection column of rat vibrissal cortex. Cereb Cortex 20:2277–2286

    PubMed Central  PubMed  Google Scholar 

  • Moneron G, Hell S (2009) Two-photon excitation STED microscopy. Opt Express 17(17):14567–14573

    CAS  PubMed  Google Scholar 

  • Moneron G, Medda R, Hein B, Giske A, Westphal V, Hell SW (2010) Fast STED microscopy with continuous wave fiber lasers. Opt Express 18:1302–1309

    CAS  PubMed  Google Scholar 

  • Montemurro MA, Rasch MJ, Murayama Y, Logothetis NK, Panzeri S (2008) Phase of firing coding of natural visual stimuli in primary visual cortex. Curr Biol 18:375–380

    CAS  PubMed  Google Scholar 

  • Mortensen KI, Churchman LS, Spudich JA, Flyvbjerg H (2010) Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nat Methods 7(5):377–381

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mukamel EA, Babcock H, Zhuang X (2012) Statistical deconvolution for superresolution fluorescence microscopy. Biophys J 102(10):2391–2400

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nordhausen CT, Rousche PJ et al (1994) Optimizing recording capabilities of the Utah-intracortical-electrode-array. Brain Res 637:27–36

    CAS  PubMed  Google Scholar 

  • Perlin GE, Wise KD (2010) An ultra compact integrated front end for wireless neural recording microsystems. J Microelectromech Syst 19:1409–1421

    Google Scholar 

  • Quian Quiroga R, Panzeri S (2009) Extracting information from neuronal populations: information theory and decoding approaches. Nat Rev Neurosci 10:173–185

    CAS  PubMed  Google Scholar 

  • Ronzitti E, Harke B, Diaspro A (2013) Frequency dependent detection in a STED microscope using modulated excitation light. Opt Express 21(1):210–219

    CAS  PubMed  Google Scholar 

  • Ropers C, Neacsu CC et al (2007) Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. Nano Lett 7:2784–2788

    CAS  PubMed  Google Scholar 

  • Rousche PJ, Normann RA (1998) Chronic recording capability of the Utah intracortical electrode array in cat sensory cortex. J Neurosci Methods 82:1–15

    CAS  PubMed  Google Scholar 

  • Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sileo L, Pisanello F et al (2013) Electrical coupling of mammalian neurons to microelectrodes with 3D nanoprotrusions. Microelectron Eng 111:384–390

    CAS  Google Scholar 

  • Smith CS, Joseph N, Rieger B, Lidke KA (2010) Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat Methods 7(5):373–375

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sniadecki NJ, Desai RA et al (2006) Nanotechnology for cell-substrate interactions. Ann Biomed Eng 34:59–74

    PubMed  Google Scholar 

  • Sodagar AM, Perlin GE et al (2009) An implantable 64-channel wireless microsystem for single-unit neural recording. IEEE J Solid State Circuits 44:2591–2604

    Google Scholar 

  • Spatz JP, Geiger B (2007) Molecular engineering of cellular environments: cell adhesion to nano-digital surfaces. Methods Cell Biol 83:89–111

    CAS  PubMed  Google Scholar 

  • Spira ME, Hai A (2013) Multi-electrode array technologies for neuroscience and cardiology. Nat Nanotechnol 8:83–94

    CAS  PubMed  Google Scholar 

  • Spira ME, Kamber D et al (2007) Improved neuronal adhesion to the surface of electronic device by engulfment of protruding micro-nails fabricated on the chip surface. In: Solid-state sensors, actuators and microsystems conference, 2007. Transducers 2007 International

    Google Scholar 

  • Spira ME, Kamber D et al (2007) Engulfment of protruding micro-nails fabricated on chip surface by cultured neurons improve their adhesion to the electronic device. MRS Online Proceedings Library 1004:null-null M3.doi:10.1557/PROC-1004-P1502-1505

    Google Scholar 

  • Starr R, Stahlheber S, Small A (2012) Fast maximum likelihood algorithm for localization of fluorescent molecules. Opt Lett 37(3):413–415

    PubMed  Google Scholar 

  • Stevenson IH, Kording KP (2011) How advances in neural recording affect data analysis. Nat Neurosci 14:139–142

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stockman MI (2004) Nanofocusing of optical energy in tapered plasmonic waveguides. Phys Rev Lett 93:137404

    PubMed  Google Scholar 

  • Stosiek C, Garaschuk O, Holthoff K, Konnerth A (2003) In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci USA 100:7319–7324

    CAS  PubMed Central  PubMed  Google Scholar 

  • Svoboda K, Yasuda R (2006) Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50:823–839

    CAS  PubMed  Google Scholar 

  • Svoboda K, Denk W, Kleinfeld D, Tank DW (1997) In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385:161–165

    CAS  PubMed  Google Scholar 

  • Szczurkowska J, dal Maschio M, Cwetsch AW, Ghezzi D, Bony G, Alabastri A, Zaccaria RP, di Fabrizio E, Ratto GM, Cancedda L (2013) Increased performance in genetic manipulation by modeling the dielectric properties of the rodent brain. Conf Proc IEEE Eng Med Biol Soc 2013:1615–1618

    PubMed  Google Scholar 

  • Takasaki KT, Ding JB, Sabatini BL (2013) Live-cell superresolution imaging by pulsed STED two-photon excitation microscopy. Biophys J 104(4):770–777

    CAS  PubMed Central  PubMed  Google Scholar 

  • Theer P, Hasan MT, Denk W (2003) Two-photon imaging to a depth of 1000 micron in living brains by use of a Ti:Al2O3 regenerative amplifier. Opt Lett 28:1022–1024

    CAS  PubMed  Google Scholar 

  • Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82(5):2775–2783

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsien RY (1980) New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 19:2396–2404

    CAS  PubMed  Google Scholar 

  • Tsien RY (1981) A non-disruptive technique for loading calcium buffers and indicators into cells. Nature 290:527–528

    CAS  PubMed  Google Scholar 

  • Van Meerbergen B, Jans K et al (2008) Peptide-functionalized microfabricated structures for improved on-chip neuronal adhesion. Conf Proc IEEE Eng Med Biol Soc 2008:1833–1836

    PubMed  Google Scholar 

  • Vicidomini G, Coto Hernández I, d’Amora M, Cella Zanacchi F, Bianchini P, Diaspro A (2013) Gated CW-STED microscopy: a versatile tool for biological nanometer scale investigation. Methods pii: S1046-2023(13)00241-7. doi: 10.1016/j.ymeth.2013.06.029

  • Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6:626–640

    CAS  PubMed  Google Scholar 

  • Wise KD, Anderson DJ et al (2004) Wireless implantable microsystems: high-density electronic interfaces to the nervous system. Proc IEEE 92:76–97

    CAS  Google Scholar 

  • Wise KD, Sodagar AM et al (2008) Microelectrodes, microelectronics, and implantable neural microsystems. Proc IEEE 96:1184–1202

    CAS  Google Scholar 

  • Wrobel G, Holler M et al (2008) Transmission electron microscopy study of the cell-sensor interface. J R Soc Interface 5:213–222

    PubMed Central  PubMed  Google Scholar 

  • York AG, Ghitani A, Vaziri A, Davidson MW, Shroff H (2011) Confined activation and subdiffractive localization enables whole-cell PALM with genetically expressed probes. Nat Methods 8:327–333

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang F, Aravanis AM, Adamantidis A, de Lecea L, Deisseroth K (2007) Circuit-breakers: optical technologies for probing neural signals and systems. Nat Rev Neurosci 8:577–581

    CAS  PubMed  Google Scholar 

  • Zhu L, Zhang W, Elnatan D, Huang B (2012) Faster STORM using compressed sensing. Nat Methods 9(7):721–723

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21:1369–1377

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Assad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Assad, J.A. et al. (2014). Brain Function: Novel Technologies Driving Novel Understanding. In: Cingolani, R. (eds) Bioinspired Approaches for Human-Centric Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-04924-3_10

Download citation

Publish with us

Policies and ethics