Reachability Analysis with State-Compatible Automata

  • Bertram Felgenhauer
  • René Thiemann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8370)

Abstract

Regular tree languages are a popular device for reachability analysis over term rewrite systems, with many applications like analysis of cryptographic protocols, or confluence and termination analysis. At the heart of this approach lies tree automata completion, first introduced by Genet for left-linear rewrite systems. Korp and Middeldorp introduced so-called quasi-deterministic automata to extend the technique to non-left-linear systems. In this paper, we introduce the simpler notion of quasi-compatible automata, which are slightly more general than quasi-deterministic, compatible automata. This notion also allows us to decide whether a regular tree language is closed under rewriting, a problem which was not known to be decidable before.

Several of our results have been formalized in the theorem prover Isabelle/HOL. This allows to certify automatically generated non-confluence and termination proofs that are using tree automata techniques.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press (1998)Google Scholar
  2. 2.
    Boyer, B., Genet, T., Jensen, T.P.: Certifying a tree automata completion checker. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 523–538. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Löding, C., Tison, S., Tommasi, M.: Tree automata techniques and applications (2007), http://tata.gforge.inria.fr
  4. 4.
    Feuillade, G., Genet, T., Tong, V.V.T.: Reachability analysis over term rewriting systems. Journal of Automated Reasoning 33, 341–383 (2004)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Genet, T.: Decidable approximations of sets of descendants and sets of normal forms. In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379, pp. 151–165. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Genet, T., Tang-Talpin, Y.M., Tong, V.V.T.: Verification of copy-protection cryptographic protocol using approximations of term rewriting systems. In: Proc. WITS 2003 (Workshop on Issues in the Theory of Security) (2003)Google Scholar
  7. 7.
    Geser, A., Hofbauer, D., Waldmann, J., Zantema, H.: On tree automata that certify termination of left-linear term rewriting systems. Information and Computation 205(4), 512–534 (2007)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Hirokawa, N., Middeldorp, A.: Tyrolean termination tool. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 175–184. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Korp, M.: Termination Analysis by Tree Automata Completion. Ph.D. thesis, University of Innsbruck (2010)Google Scholar
  10. 10.
    Korp, M., Middeldorp, A.: Match-bounds revisited. Information and Computation 207(11), 1259–1283 (2009)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Lammich, P., Lochbihler, A.: The Isabelle collections framework. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 339–354. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Lochbihler, A.: Light-weight containers for Isabelle: Efficient, extensible, nestable. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 116–132. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Nipkow, T., Paulson, L.C., Wenzel, M.T. (eds.): Isabelle/HOL – A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)Google Scholar
  14. 14.
    Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTa. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 452–468. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Zankl, H., Felgenhauer, B., Middeldorp, A.: CSI – A confluence tool. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 499–505. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Bertram Felgenhauer
    • 1
  • René Thiemann
    • 1
  1. 1.Institute of Computer ScienceUniversity of InnsbruckInnsbruckAustria

Personalised recommendations