Skip to main content

Characterisation of the State Spaces of Live and Bounded Marked Graph Petri Nets

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8370)

Abstract

The structure of the reachability graph of a live and bounded marked graph Petri net is fully characterised. A dedicated synthesis procedure is presented which allows the net and its bounds to be computed from its reachability graph.

Keywords

  • Petri nets
  • region theory
  • system synthesis
  • transition systems

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-04921-2_13
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-04921-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Badouel, E., Bernardinello, L., Darondeau, P.: Theory of Regions (to appear)

    Google Scholar 

  2. Badouel, E., Darondeau, P.: Theory of Regions. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 529–586. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  3. Best, E., Darondeau, P.: A Decomposition Theorem for Finite Persistent Transition Systems. Acta Informatica 46, 237–254 (2009)

    CrossRef  MATH  MathSciNet  Google Scholar 

  4. Best, E., Darondeau, P.: Separability in Persistent Petri Nets. Fundamenta Informaticae 112, 1–25 (2011)

    MathSciNet  Google Scholar 

  5. Best, E., Darondeau, P.: Petri Net Distributability. In: Clarke, E., Virbitskaite, I., Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 1–18. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  6. Best, E., Devillers, R.: Solving LTS with Parikh-unique Cycles. Technical Report (2013)

    Google Scholar 

  7. Commoner, F., Holt, A.W., Even, S., Pnueli, A.: Marked Directed Graphs. J. Comput. Syst. Sci. 5(5), 511–523 (1971)

    CrossRef  MATH  MathSciNet  Google Scholar 

  8. Genrich, H.J., Lautenbach, K.: Synchronisationsgraphen. Acta Inf. 2, 143–161 (1973)

    CrossRef  MATH  MathSciNet  Google Scholar 

  9. Keller, R.M.: A Fundamental Theorem of Asynchronous Parallel Computation. In: Tse-Yun, F. (ed.) Parallel Processing. LNCS, vol. 24, pp. 102–112. Springer, Heidelberg (1975)

    CrossRef  Google Scholar 

  10. Kondratyev, A., Cortadella, J., Kishinevsky, M., Pastor, E., Roig, O., Yakovlev, A.: Checking Signal Transition Graph Implementability by Symbolic BDD Traversal. In: Proc. European Design and Test Conference, Paris, France, pp. 325–332 (1995)

    Google Scholar 

  11. Landweber, L.H., Robertson, E.L.: Properties of Conflict-Free and Persistent Petri Nets. JACM 25(3), 352–364 (1978)

    CrossRef  MATH  MathSciNet  Google Scholar 

  12. Teruel, E.: On Weighted T-systems. In: Jensen, K. (ed.) ICATPN 1992. LNCS, vol. 616, pp. 348–367. Springer, Heidelberg (1992)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Best, E., Devillers, R. (2014). Characterisation of the State Spaces of Live and Bounded Marked Graph Petri Nets. In: Dediu, AH., Martín-Vide, C., Sierra-Rodríguez, JL., Truthe, B. (eds) Language and Automata Theory and Applications. LATA 2014. Lecture Notes in Computer Science, vol 8370. Springer, Cham. https://doi.org/10.1007/978-3-319-04921-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04921-2_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04920-5

  • Online ISBN: 978-3-319-04921-2

  • eBook Packages: Computer ScienceComputer Science (R0)