Skip to main content

Characterisation of the State Spaces of Live and Bounded Marked Graph Petri Nets

  • Conference paper
Language and Automata Theory and Applications (LATA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8370))

Abstract

The structure of the reachability graph of a live and bounded marked graph Petri net is fully characterised. A dedicated synthesis procedure is presented which allows the net and its bounds to be computed from its reachability graph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Badouel, E., Bernardinello, L., Darondeau, P.: Theory of Regions (to appear)

    Google Scholar 

  2. Badouel, E., Darondeau, P.: Theory of Regions. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 529–586. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  3. Best, E., Darondeau, P.: A Decomposition Theorem for Finite Persistent Transition Systems. Acta Informatica 46, 237–254 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Best, E., Darondeau, P.: Separability in Persistent Petri Nets. Fundamenta Informaticae 112, 1–25 (2011)

    MathSciNet  Google Scholar 

  5. Best, E., Darondeau, P.: Petri Net Distributability. In: Clarke, E., Virbitskaite, I., Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 1–18. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Best, E., Devillers, R.: Solving LTS with Parikh-unique Cycles. Technical Report (2013)

    Google Scholar 

  7. Commoner, F., Holt, A.W., Even, S., Pnueli, A.: Marked Directed Graphs. J. Comput. Syst. Sci. 5(5), 511–523 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  8. Genrich, H.J., Lautenbach, K.: Synchronisationsgraphen. Acta Inf. 2, 143–161 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  9. Keller, R.M.: A Fundamental Theorem of Asynchronous Parallel Computation. In: Tse-Yun, F. (ed.) Parallel Processing. LNCS, vol. 24, pp. 102–112. Springer, Heidelberg (1975)

    Chapter  Google Scholar 

  10. Kondratyev, A., Cortadella, J., Kishinevsky, M., Pastor, E., Roig, O., Yakovlev, A.: Checking Signal Transition Graph Implementability by Symbolic BDD Traversal. In: Proc. European Design and Test Conference, Paris, France, pp. 325–332 (1995)

    Google Scholar 

  11. Landweber, L.H., Robertson, E.L.: Properties of Conflict-Free and Persistent Petri Nets. JACM 25(3), 352–364 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  12. Teruel, E.: On Weighted T-systems. In: Jensen, K. (ed.) ICATPN 1992. LNCS, vol. 616, pp. 348–367. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Best, E., Devillers, R. (2014). Characterisation of the State Spaces of Live and Bounded Marked Graph Petri Nets. In: Dediu, AH., Martín-Vide, C., Sierra-Rodríguez, JL., Truthe, B. (eds) Language and Automata Theory and Applications. LATA 2014. Lecture Notes in Computer Science, vol 8370. Springer, Cham. https://doi.org/10.1007/978-3-319-04921-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04921-2_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04920-5

  • Online ISBN: 978-3-319-04921-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics