Characterisation of the State Spaces of Live and Bounded Marked Graph Petri Nets

  • Eike Best
  • Raymond Devillers
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8370)


The structure of the reachability graph of a live and bounded marked graph Petri net is fully characterised. A dedicated synthesis procedure is presented which allows the net and its bounds to be computed from its reachability graph.


Petri nets region theory system synthesis transition systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Badouel, E., Bernardinello, L., Darondeau, P.: Theory of Regions (to appear)Google Scholar
  2. 2.
    Badouel, E., Darondeau, P.: Theory of Regions. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 529–586. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Best, E., Darondeau, P.: A Decomposition Theorem for Finite Persistent Transition Systems. Acta Informatica 46, 237–254 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Best, E., Darondeau, P.: Separability in Persistent Petri Nets. Fundamenta Informaticae 112, 1–25 (2011)MathSciNetGoogle Scholar
  5. 5.
    Best, E., Darondeau, P.: Petri Net Distributability. In: Clarke, E., Virbitskaite, I., Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 1–18. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Best, E., Devillers, R.: Solving LTS with Parikh-unique Cycles. Technical Report (2013)Google Scholar
  7. 7.
    Commoner, F., Holt, A.W., Even, S., Pnueli, A.: Marked Directed Graphs. J. Comput. Syst. Sci. 5(5), 511–523 (1971)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Genrich, H.J., Lautenbach, K.: Synchronisationsgraphen. Acta Inf. 2, 143–161 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Keller, R.M.: A Fundamental Theorem of Asynchronous Parallel Computation. In: Tse-Yun, F. (ed.) Parallel Processing. LNCS, vol. 24, pp. 102–112. Springer, Heidelberg (1975)CrossRefGoogle Scholar
  10. 10.
    Kondratyev, A., Cortadella, J., Kishinevsky, M., Pastor, E., Roig, O., Yakovlev, A.: Checking Signal Transition Graph Implementability by Symbolic BDD Traversal. In: Proc. European Design and Test Conference, Paris, France, pp. 325–332 (1995)Google Scholar
  11. 11.
    Landweber, L.H., Robertson, E.L.: Properties of Conflict-Free and Persistent Petri Nets. JACM 25(3), 352–364 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Teruel, E.: On Weighted T-systems. In: Jensen, K. (ed.) ICATPN 1992. LNCS, vol. 616, pp. 348–367. Springer, Heidelberg (1992)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Eike Best
    • 1
  • Raymond Devillers
    • 2
  1. 1.Department of Computing ScienceCarl von Ossietzky Universität OldenburgOldenburgGermany
  2. 2.Département d’InformatiqueUniversité Libre de BruxellesBruxellesBelgium

Personalised recommendations