Dissecting Round Trip Time on the Slow Path with a Single Packet

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8362)


Researchers and operators often measure Round Trip Time when monitoring, troubleshooting, or otherwise assessing network paths. However, because it combines all hops traversed along both the forward and reverse path, it can be difficult to interpret or to attribute delay to particular path segments.

In this work, we present an approach using a single packet to dissect the RTT in chunks mapped to specific portions of the path. Using the IP Prespecified Timestamp option directed at intermediate routers, it provides RTT estimations along portions of the slow path. Using multiple vantage points (116 PlanetLab nodes), we show that the proposed approach can be applied on more than 77% of the considered paths. Finally, we present preliminary results for two use cases (home network contribution to the RTT and per-Autonomous System RTT contribution) to demonstrate its potential in practical scenarios.


Round Trip Time Home Network Forward Path Reverse Path Single Packet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Almes, G., Kalidindi, S., Zekauskas, M.: A round-trip delay metric for IPPM. Technical report, RFC 2681 (September 1999)Google Scholar
  2. 2.
    Augustin, B., et al.: Avoiding traceroute anomalies with Paris traceroute. In: ACM SIGCOMM IMC, pp. 153–158. ACM (2006)Google Scholar
  3. 3.
    Bavier, A., et al.: Operating system support for planetary-scale network services. In: NSDI (2004)Google Scholar
  4. 4.
  5. 5.
    de Donato, W., Marchetta, P., Pescapé, A.: A hands-on look at active probing using the IP prespecified timestamp option. In: Taft, N., Ricciato, F. (eds.) PAM 2012. LNCS, vol. 7192, pp. 189–199. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    DiCioccio, L., Teixeira, R., May, M., Kreibich, C.: Probe and pray: Using UPnP for home network measurements. In: Taft, N., Ricciato, F. (eds.) PAM 2012. LNCS, vol. 7192, pp. 96–105. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    DiCioccio, L., Teixeira, R., Rosenberg, C.: Impact of home networks on end-to-end performance: controlled experiments. In: ACM HomeNets (2010)Google Scholar
  8. 8.
    Ferguson, A., Fonseca, R.: Inferring router statistics with IP timestamps. In: ACM CoNEXT Student Workshop (2010)Google Scholar
  9. 9.
    Fonseca, R., Porter, G., Katz, R., Shenker, S., Stoica, I.: IP options are not an option, Univ. of California, Berkeley (2005)Google Scholar
  10. 10.
    Fransson, P., Jonsson, A.: End-to-end measurements on performance penalties of IPv4 options. In: IEEE GLOBECOM (2004)Google Scholar
  11. 11.
    Govindan, R., Paxson, V.: Estimating router ICMP generation delays. In: PAM (2002)Google Scholar
  12. 12.
    He, Y., Faloutsos, M., Krishnamurthy, S.: Quantifying routing asymmetry in the Internet at the AS level. In: IEEE GLOBECOM (2004)Google Scholar
  13. 13.
    Hyun, Y., Broido, A., et al.: On third-party addresses in traceroute paths (2003)Google Scholar
  14. 14.
    Katz-Bassett, E., et al.: Reverse traceroute. In: NSDI (2010)Google Scholar
  15. 15.
    Madhyastha, H.V.: An information plane for Internet applications. UW dissertation (2008)Google Scholar
  16. 16.
    Madhyastha, H.V., Katz-Bassett, E., Anderson, T., Krishnamurthy, A., Venkataramani, A.: iPlane Nano: Path prediction for peer-to-peer applications. In: NSDI (2009)Google Scholar
  17. 17.
    Marchetta, P., de Donato, W., Pescapé, A.: Detecting third-party addresses in traceroute traces with IP timestamp option. In: Roughan, M., Chang, R. (eds.) PAM 2013. LNCS, vol. 7799, pp. 21–30. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  18. 18.
    Marchetta, P., Persico, V., Katz-Bassett, E., Pescapé, A.: Don’t trust traceroute (completely). In: ACM CoNEXT Student Workshop (2013)Google Scholar
  19. 19.
    Marchetta, P., Persico, V., Pescapé, A.: Pythia: yet another active probing technique for alias resolution. In: ACM CoNEXT, pp. 229–234 (2013)Google Scholar
  20. 20.
    Marchetta, P., Pescapè, A.: Drago: Detecting, quantifying and locating hidden routers in traceroute IP paths. In: IEEE Global Internet Symposium (2013)Google Scholar
  21. 21.
    Pelsser, C., Cittadini, L., Vissicchio, S., Bush, R.: From Paris to Tokyo: On the suitability of ping to measure latency. In: IMC 2013, pp. 427–432. ACM (2013)Google Scholar
  22. 22.
    Postel, J.: Internet protocol: DARPA Internet program protocol specification. RFC 791 (1981)Google Scholar
  23. 23.
    Schwartz, Y., Shavitt, Y., Weinsberg, U.: On the diversity, stability and symmetry of end-to-end Internet routes. In: IEEE INFOCOM Workshops (2010)Google Scholar
  24. 24.
    Sherry, J.: Applications of the IP timestamp option to Internet measurement. Undergraduate Honor Thesis (2010)Google Scholar
  25. 25.
    Sherry, J., Katz-Bassett, E., Pimenova, M., Madhyastha, H., Anderson, T., Krishnamurthy, A.: Resolving IP aliases with prespecified timestamps. In: ACM SIGCOMM IMC (2010)Google Scholar
  26. 26.
    Sherwood, R., Spring, N.: Touring the Internet in a TCP sidecar. In: ACM SIGCOMM IMC, pp. 339–344. ACM (2006)Google Scholar
  27. 27.
    Sundaresan, S., de Donato, W., Feamster, N., Teixeira, R., Crawford, S., Pescapè, A.: Broadband Internet performance: A view from the gateway. SIGCOMM 2011 41(4), 134 (2011)CrossRefGoogle Scholar
  28. 28.
    Zeng, H., Kazemian, P., Varghese, G., McKeown, N.: A survey on network troubleshooting. Technical report, TR12-HPNG-061012, Stanford University (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.University of Napoli Federico IINapoliItaly
  2. 2.University of Southern CaliforniaLos AngelesUSA

Personalised recommendations