Ingress Point Spreading: A New Primitive for Adaptive Active Network Mapping

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8362)


Among outstanding challenges to Internet-wide topology mapping using active probes is balancing efficiency, e.g. induced load and time, with coverage. Toward maximizing probe utility, we introduce Ingress Point Spreading (IPS). IPS utilizes ingress diversity discovered in prior rounds of probing to rank-order available vantage points such that future probes traverse all known paths into a target network. We implement and deploy IPS to probe ~49k random prefixes drawn from the global BGP table using a distributed collection of vantage points. As compared to existing mapping systems, we discover 12% more unique vertices and 12% more edges using ~50% fewer probes, in half the time.


Path Diversity Target Network Internet Topology Destination Network Ingress Router 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The CAIDA UCSD IPv4 Routed/24 Topology Dataset (2013),
  2. 2.
    Beverly, R., Berger, A., Xie, G.G.: Primitives for active Internet topology mapping: Toward high-frequency characterization. In: Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement, pp. 165–171 (2010)Google Scholar
  3. 3.
    Chen, M., Xu, M., Xu, K.: A delay-guiding source selection method in network topology discovery. In: IEEE International Conference on Communications (2011)Google Scholar
  4. 4.
    Claffy, K., Hyun, Y., Keys, K., Fomenkov, M.: Internet mapping: From art to science. In: IEEE Cybersecurity Applications and Technologies Conference (March 2009)Google Scholar
  5. 5.
    Dainotti, A., Squarcella, C., Aben, E., Claffy, K., Chiesa, M., Russo, M., Pescap, A.: Analysis of Country-wide Internet Outages Caused by Censorship. In: Internet Measurement Conference (IMC), pp. 1–18 (November 2011)Google Scholar
  6. 6.
    Dhamdhere, A., Dovrolis, C.: The Internet is flat: Modeling the transition from a transit hierarchy to a peering mesh. In: Proceedings of ACM CoNEXT (2010)Google Scholar
  7. 7.
    Donnet, B., Raoult, P., Friedman, T., Crovella, M.: Efficient algorithms for large-scale topology discovery 33(1), 327–338 (2005)Google Scholar
  8. 8.
    Gonen, M., Shavitt, Y.: An O(log n)-approximation for the set cover problem with set ownership. Inf. Process. Lett. 109(3) (2009)Google Scholar
  9. 9.
    Hyun, Y.: On-demand IPv4 and IPv6 topology measurements (2012)Google Scholar
  10. 10.
    Hyun, Y., Claffy, K.: Archipelago measurement infrastructure (2013),
  11. 11.
    Kardes, H., Gunes, M., Oz, T.: Cheleby: A subnet-level Internet topology mapping system. In: COMSNETS, pp. 1–10. IEEE (2012)Google Scholar
  12. 12.
    Labovitz, C., Iekel-Johnson, S., McPherson, D., Oberheide, J., Jahanian, F.: Internet inter-domain traffic. In: Proceedings of ACM SIGCOMM (2010)Google Scholar
  13. 13.
    Madhyastha, H.V., Isdal, T., Piatek, M., Dixon, C., Anderson, T., Krishnamurthy, A., Venkataramani, A.: iPlane: An information plane for distributed services. In: Proceedings of NSDI, pp. 367–380 (2006)Google Scholar
  14. 14.
    Meyer, D.: University of Oregon RouteViews (2013),
  15. 15.
    Shavitt, Y., Shir, E.: DIMES: Let the Internet measure itself. SIGCOMM Computer Communication Review 35(5), 71–74 (2005)CrossRefGoogle Scholar
  16. 16.
    Shavitt, Y., Weinsberg, U.: Quantifying the importance of vantage points distribution in Internet topology measurements. In: IEEE INFOCOM (March 2009)Google Scholar
  17. 17.
    Spring, N., Mahajan, R., Wetherall, D.: Measuring ISP topologies with Rocketfuel. ACM SIGCOMM Computer Communication Review 32(4), 133–145 (2002)CrossRefGoogle Scholar
  18. 18.
    Bourgeau, T., Friedman, T.: Efficient IP-level network topology capture. In: Roughan, M., Chang, R. (eds.) PAM 2013. LNCS, vol. 7799, pp. 11–20. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Willinger, W., Alderson, D., Doyle, J.C.: Mathematics and the Internet: A source of enormous confusion and great potential. Notices of the AMS 56(5) (2009)Google Scholar
  20. 20.
    Wu, J., Zhang, Y., Mao, Z.M., Shin, K.G.: Internet routing resilience to failures: analysis and implications. In: Proceedings of ACM CoNEXT (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Naval Postgraduate SchoolMontereyUSA

Personalised recommendations