Skip to main content

The Structure of Warm Dense Matter Modeled with an Average Atom Model with Ion-Ion Correlations

  • Conference paper
  • First Online:
Frontiers and Challenges in Warm Dense Matter

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 96))

Abstract

We present a new model of warm dense matter that represents an intermediate approach between the relative simplicity of “one-ion” average atom models and the more realistic but computationally expensive ab initio simulation methods. Physical realism is achieved primarily by including the correlations in the plasma that surrounds a central ion. The plasma is described with the Ornstein-Zernike integral equations theory of fluids, which is coupled to an average atom model for the central ion. In this contribution we emphase the key elements and approximations and how they relate to and expand upon a typical average atom model. Besides being relatively inexpensive computationally, this approach offers several advantages over ab initio simulations but also has a number of limitations. The model is validated by comparisons with numerical solutions for the pair distribution function of the ions from ab initio simulations for several elements and a wide range of plasma conditions. Simulations results are reproduced remarkably well and simpler limiting theories are recovered as well. This model has many potential applications to the calculation of properties of warm dense matter such as the equation of state and conductivities for a wide range of temperatures and densities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Achieving accurate numerical solutions is more challenging [15] but has progressed considerably [16].

  2. 2.

    In this case the boundary condition is applied at r = R.

  3. 3.

    Note that this is different from the AA ion charge Z , which is further discussed in Sect. 3.2.

  4. 4.

    This is the same model as the JVM of [18] and similar to the JVM of [27].

References

  1. Report of ReNew workshop, Basic research needs for high energy density laboratory physics (U.S. Department of Energy, 2009). http://science.energy.gov/~/media/fes/pdf/workshop-reports/Hedlp_brn_workshop_report_oct_2010.pdf

  2. A.W. DeSilva, J.D. Katsouros, Phys. Rev. E 57, 5945 (1998)

    Article  Google Scholar 

  3. A. Mančić et al., Phys. Rev. Lett. 104, 035002 (2010)

    Article  Google Scholar 

  4. J. Eggert, S. Brygoo, P. Loubeyre, R.S. McWilliams, P.M. Celliers, D.G. Hicks, T.R. Boehly, R. Jeanloz, G.W. Collins, Phys. Rev. Lett. 100, 124503 (2008)

    Article  Google Scholar 

  5. E.G. Saiz et al., Nat. Phys. 4, 940 (2008)

    Article  Google Scholar 

  6. A.L. Kritcher et al., Science 322, 69 (2008)

    Article  Google Scholar 

  7. O. Ciricosta et al., Phys. Rev. Lett. 109, 065002 (2012)

    Article  Google Scholar 

  8. A. Benuzzi-Mounaix, F. Dorchies, V. Recoules, F. Festa, O. Peyrusse, A. Lévy, A. Ravasio, T. Hall, M. Koenig, N. Amadou, E. Brambrink, S. Mazevet, Phys. Rev. Lett. 107, 165006 (2011)

    Article  Google Scholar 

  9. F. Dorchies, A. Lévy, C. Goyon, P. Combis, D. Descamps, C. Fourment, M. Harmand, S. Hulin, P.M. Leguay, S. Petit, O. Peyrusse, J.J. Santos, Phys. Rev. Lett. 107, 245006 (2011)

    Article  Google Scholar 

  10. T. Ma, T. Döppner, R.W. Falcone, L. Fletcher, C. Fortmann, D.O. Gericke, O.L. Landen, H.J. Lee, A. Pak, J. Vorberger, K. Wünsch, S.H. Glenzer, Phys. Rev. Lett. 110, 065001 (2013)

    Article  Google Scholar 

  11. T. Guillot, D.J. Stevenson, W.B. Hubbard, D. Saumon, in Jupiter – The Planet, Satellites and Magnetosphere (Chap. 3) F. Bagenal, T. Dowling and W. McKinnon, Eds. (Cambridge University Press, New York, 2004)

    Google Scholar 

  12. R. Redmer, T.R. Mattsson, N. Nettelmann, M. French, Icarus 211, 798 (2011)

    Article  Google Scholar 

  13. G. Fontaine, H.M.V. Horn, Astrophys. J. Suppl. 31, 467 (1976)

    Article  Google Scholar 

  14. J.J. Fortney, S.H. Glenzer, M. Koenig, B. Militzer, D. Saumon, D. Valencia, Phys. Plasmas 16, 1003 (2009)

    Article  Google Scholar 

  15. D.A. Liberman, J. Quant. Spectrosc. Ratiat. Transf. 27, 335 (1982)

    Article  Google Scholar 

  16. B. Wilson, V. Sonnad, P. Sterne, W. Isaacs, J. Quant. Spectrosc. Ratiat. Transf. 99, 658 (2006)

    Article  Google Scholar 

  17. P. Sterne, S. Hansen, B. Wilson, W. Isaacs, High Energy Density Phys. 3, 278 (2007)

    Article  Google Scholar 

  18. R. Piron, T. Blenski, Phys. Rev. E 83, 026403 (2011)

    Article  Google Scholar 

  19. S. Mazevet, M.P. Desjarlais, L.A. Collins, J.D. Kress, N.H. Magee, Phys. Rev. E 71, 016409 (2005)

    Article  Google Scholar 

  20. M.P. Desjarlais, J.D. Kress, L.A. Collins, Phys. Rev. E 66, 025401(R) (2002)

    Google Scholar 

  21. G. Zérah, J. Clérouin, E.L. Pollock, Phys. Rev. Lett. 69, 446 (1992)

    Article  Google Scholar 

  22. F. Lambert, J. Clerouin, G. Zerah, Phys. Rev. E 73, 016403 (2006)

    Article  Google Scholar 

  23. D.M. Ceperley, Rev. Mod. Phys. 67, 279 (1995)

    Article  Google Scholar 

  24. K.P. Driver, B. Militzer, Phys. Rev. Lett. 108, 115502 (2012)

    Article  Google Scholar 

  25. B. Holst, R. Redmer, Phys. Rev. B 77, 184201 (2008)

    Article  Google Scholar 

  26. H. Xu, J.P. Hansen, Phys. Rev. E 57, 211 (1998)

    Article  Google Scholar 

  27. J. Chihara, J. Phys. Condens. Matter 3, 8715 (1991)

    Article  Google Scholar 

  28. F. Perrot, Phys. Rev. E 47, 570 (1993)

    Article  Google Scholar 

  29. D. Ofer, E. Nardi, Y. Rosenfeld, Phys. Rev. A 38, 5801 (1988)

    Article  Google Scholar 

  30. C.E. Starrett, D. Saumon, Phys. Rev. E 87, 013104 (2013)

    Article  Google Scholar 

  31. C.E. Starrett, D. Saumon, Phys. Rev. E 88, 059901(E) (2013)

    Google Scholar 

  32. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  MathSciNet  Google Scholar 

  33. N.D. Mermin, Phys. Rev. 137, A1441 (1965)

    Article  MathSciNet  Google Scholar 

  34. R. Parr, W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989)

    Google Scholar 

  35. L.H. Thomas, Proc. Camb. Philos. Soc. 23, 542 (1927)

    Article  MATH  Google Scholar 

  36. E. Fermi, Z. Phys. 48, 73 (1928)

    Article  MATH  Google Scholar 

  37. R.P. Feynman, N. Metroplis, E. Teller, Phys. Rev. 75, 1561 (1949)

    Article  MATH  Google Scholar 

  38. T. Blenski, B. Cichocki, Phys. Rev. E 75, 056402 (2007)

    Article  Google Scholar 

  39. D.A. Liberman, Phys. Rev. B 20, 4981 (1979)

    Article  Google Scholar 

  40. T. Blenski, K. Ishikawa, Phys. Rev. E 51, 4869 (1995)

    Article  Google Scholar 

  41. E. Wigner, F. Seitz, Phys. Rev. 43, 804 (1933)

    Article  Google Scholar 

  42. B.J.B. Crowley, J.W. Harris, J. Quant. Spectros. Ratiat. Transf. 71, 257 (2001)

    Article  Google Scholar 

  43. B.F. Rozsnyai, Phys. Rev. A 5, 1137 (1972)

    Article  Google Scholar 

  44. G. Faussurier, C. Blancard, P. Cossé, P. Renaudin, Phys. Plasma 17, 052707 (2010)

    Article  Google Scholar 

  45. J.P. Hansen, I. McDonald, Theory of Simple Liquids, 3rd edn. (Academic, London/Burlington, 2006)

    Google Scholar 

  46. C. Caccamo, Phys. Rep. 274, 1 (1996)

    Article  Google Scholar 

  47. J.A. Anta, A.A. Louis, Phys. Rev. B 61, 11400 (2000)

    Article  Google Scholar 

  48. O. Peyrusse, J. Phys. Condens. Matter 20, 195211 (2008)

    Article  Google Scholar 

  49. C.E. Starrett, D. Saumon, Phys. Rev. E 85, 026403 (2012)

    Article  Google Scholar 

  50. J. Chihara, J. Phys. C Solid State Phys. 18, 3103 (1985)

    Article  Google Scholar 

  51. Y. Rosenfeld, N.W. Ashcroft, Phys. Rev. A 20, 1209 (1979)

    Google Scholar 

  52. A. Malijevský, S. Labík, Mol. Phys. 60, 663 (1987)

    Article  Google Scholar 

  53. H. Iyetomi, S. Ogata, S. Ichimaru, Phys. Rev. A 46, 1051 (1992)

    Article  Google Scholar 

  54. W. Daughton, M. Murillo, L. Thode, Phys. Rev. E 61, 2129 (2000)

    Article  Google Scholar 

  55. Y. Rosenfeld, J. Stat. Phys. 42, 437 (1986)

    Article  MathSciNet  Google Scholar 

  56. J.M. Ziman, Proc. Phys. Soc. 91, 701 (1967)

    Article  Google Scholar 

  57. L. Dagens, J. Phys. C 5, 2333 (1972)

    Article  Google Scholar 

  58. N.W. Ashcroft, D. Stroud, Solid State Phys. 33, 1 (1978)

    Google Scholar 

  59. S. Ichimaru, Rev. Mod. Phys. 54, 1017 (1982)

    Article  Google Scholar 

  60. G. Chabrier, J. Phys. Fr. 51, 1607 (1990)

    Article  Google Scholar 

  61. D. Saumon, C.E. Starrett, J.D. Kress, J. Clerouin, High Energy Density Phys. 8, 150 (2012)

    Article  Google Scholar 

  62. C.E. Starrett, D. Saumon, High Energy Density Phys. 10, 35 (2014)

    Article  Google Scholar 

  63. V. Recoules, F. Lambert, A. Decoster, B. Canaud, J. Clérouin, Phys. Rev. Lett. 102, 075002 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge V. Recoules, F. Lambert, J. D. Kress and L. Collins for providing pair distribution functions from their ab initio simulations. This work was performed under the auspices of the United States Department of Energy under contract DE-AC52-06NA25396.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Saumon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Saumon, D., Starrett, C.E., Anta, J.A., Daughton, W., Chabrier, G. (2014). The Structure of Warm Dense Matter Modeled with an Average Atom Model with Ion-Ion Correlations. In: Graziani, F., Desjarlais, M., Redmer, R., Trickey, S. (eds) Frontiers and Challenges in Warm Dense Matter. Lecture Notes in Computational Science and Engineering, vol 96. Springer, Cham. https://doi.org/10.1007/978-3-319-04912-0_6

Download citation

Publish with us

Policies and ethics