Abstract
This chapter introduces thermal density functional theory, starting from the ground-state theory and assuming a background in quantum mechanics and statistical mechanics. We review the foundations of density functional theory (DFT) by illustrating some of its key reformulations. The basics of DFT for thermal ensembles are explained in this context, as are tools useful for analysis and development of approximations. This review emphasizes thermal DFT’s strengths as a consistent and general framework.
Keywords
- Density Functional Theory
- Local Density Approximation
- Degenerate Ground State
- Thermal Ensemble
- Single Slater Determinant
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options




Notes
- 1.
- 2.
In this work, we discuss only spin-unpolarized electrons.
- 3.
Here and in the remainder of the chapter, we restrict ourselves to square-integrable wavefunctions over the domain \({\mathbb{R}}^{3N}\).
- 4.
For a more extended discussion of these topics, see Ref. [60].
- 5.
Note that, we eventually choose to work in a system of units such that the Boltzmann constant is k B = 1, that is, temperature is measured in energy units.
- 6.
The interested reader may find the extension of the Hohenberg-Kohn theorem to the thermal framework in Mermin’s paper.
- 7.
Uniform coordinate scaling may be considered as (very) careful dimensional analysis applied to density functionals. Dufty and Trickey analyze non-interacting functionals in this way in Ref. [15].
References
N.R.C.C. on High Energy Density Plasma Physics Plasma Science Committee, Frontiers in High Energy Density Physics: The X-Games of Contemporary Science (The National Academies Press, Washington, D.C., 2003)
T.R. Mattsson, M.P. Desjarlais, Phys. Rev. Lett. 97, 017801 (2006)
F.R. Graziani, V.S. Batista, L.X. Benedict, J.I. Castor, H. Chen, S.N. Chen, C.A. Fichtl, J.N. Glosli, P.E. Grabowski, A.T. Graf, S.P. Hau-Riege, A.U. Hazi, S.A. Khairallah, L. Krauss, A.B. Langdon, R.A. London, A. Markmann, M.S. Murillo, D.F. Richards, H.A. Scott, R. Shepherd, L.G. Stanton, F.H. Streitz, M.P. Surh, J.C. Weisheit, H.D. Whitley, High Energy Density Phys. 8(1), 105 (2012)
K.Y. Sanbonmatsu, L.E. Thode, H.X. Vu, M.S. Murillo, J. Phys. IV France 10(PR5), Pr5 (2000)
S. Atzeni, J. Meyer-ter Vehn, The Physics of Inertial Fusion: Beam-Plasma Interaction, Hydrodynamics, Hot Dense Matter (Oxford University Press, New York, 2004)
M.D. Knudson, M.P. Desjarlais, Phys. Rev. Lett. 103, 225501 (2009)
A. Kietzmann, R. Redmer, M.P. Desjarlais, T.R. Mattsson, Phys. Rev. Lett. 101, 070401 (2008)
S. Root, R.J. Magyar, J.H. Carpenter, D.L. Hanson, T.R. Mattsson, Phys. Rev. Lett. 105(8), 085501 (2010)
K. Burke, J. Chem. Phys. 136, 150901 (2012)
P. Hohenberg, W. Kohn, Phys. Rev. 136(3B), B864 (1964)
M. Levy, Proc. Natl. Acad. Sci. USA 76(12), 6062 (1979)
E.H. Lieb, Int. J. Quantum Chem. 24(3), 243 (1983)
N.D. Mermin, Phys. Rev. 137, A: 1441 (1965)
S. Pittalis, C.R. Proetto, A. Floris, A. Sanna, C. Bersier, K. Burke, E.K.U. Gross, Phys. Rev. Lett. 107, 163001 (2011)
J.W. Dufty, S.B. Trickey, Phys. Rev. B 84, 125118 (2011). Interested readers should note that Dufty and Trickey also have a paper concerning interacting functionals in preparation
L.H. Thomas, Math. Proc. Camb. Phil. Soc. 23(05), 542 (1927)
E. Fermi, Rend. Acc. Naz. Lincei 6, 602–607 (1927)
E. Fermi, Z. für Phys. A Hadrons Nucl. 48, 73 (1928)
V. Fock, Z. Phys. 61, 126 (1930)
D.R. Hartree, W. Hartree, Proc. R. Soc. Lond. Ser. A – Math. Phys. Sci. 150(869), 9 (1935)
W. Kohn, L.J. Sham, Phys. Rev. 140(4A), A1133 (1965)
K. Burke. The ABC of DFT. http://dft.uci.edu/doc/g1.pdf (created April 10, 2007)
K. Burke, L.O. Wagner, Int. J. Quant. Chem. 113, 96 (2013)
F. Schwabl, Quantum Mechanics (Springer, Berlin/Heidelberg/New York, 2007)
J.J. Sakurai, Modern Quantum Mechanics, Rev. Edn. (Addison Wesley, Reading, 1993)
E. Engel, R.M. Dreizler, Density Functional Theory: An Advanced Course (Springer, Heidelberg/Dordrecht/London/New York, 2011)
C.D. Sherrill, J. Chem. Phys. 132(11), 110902 (2010)
R.M. Dreizler, E.K.U. Gross, Density Functional Theory: An Approach to the Quantum Many-Body Problem (Springer, Berlin/New York, 1990)
W. Kohn, in Highlight of Condensed Matter Theory, ed. by F. Bassani, F. Fumi, M.P. Tosi (North-Holland, Amsterdam, 1985), p. 1
G.F. Giuliani, G. Vignale (eds.), Quantum Theory of the Electron Liquid (Cambridge University Press, Cambridge, 2008)
R. Dreizler, J. da Providência, N.A.T.O.S.A. Division (eds.), Density Functional Methods in Physics. NATO ASI B Series (Springer, Dordrecht, 1985)
H. Englisch, R. Englisch, Phys. A Stat. Mech. Appl. 121(1–2), 253 (1983)
F.W. Averill, G.S. Painter, Phys. Rev. B 15, 2498 (1992)
S.G. Wang, W.H.E. Scharz, J. Chem. Phys. 105, 4641 (1996)
P.R.T. Schipper, O.V. Gritsenko, E.J. Baerends, Theor. Chem. Acc. 99, 4056 (1998)
P.R.T. Schipper, O.V. Gritsenko, E.J. Baerends, J. Chem. Phys. 111, 4056 (1999)
C.A. Ullrich, W. Kohn, Phys. Rev. Lett. 87, 093001 (2001)
M. Reed, B. Simon, I: Functional Analysis (Methods of Modern Mathematical Physics) (Academic, San Diego, 1981)
J. Harriman, Phys. Rev. A 24, 680 (1981)
R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989)
R. van Leeuwen, Adv. Q. Chem. 43, 24 (2003)
M. Levy, Phys. Rev. A 26, 1200 (1982)
S.V. Valone, J. Chem. Phys. 73, 1344 (1980)
H. Englisch, R. Englisch, Phys. Stat. Solidi B 123, 711 (1984)
H. Englisch, R. Englisch, Phys. Stat. Solidi B 124, 373 (1984)
J.T. Chayes, L. Chayes, M.B. Ruskai, J. Stat. Phys 38, 497 (1985)
J. Perdew, Phys. Rev. B 33, 8822 (1986)
A.D. Becke, Phys. Rev. A 38(6), 3098 (1988)
A.D. Becke, J. Chem. Phys. 98(7), 5648 (1993)
C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37(2), 785 (1988)
J.P. Perdew, K. Schmidt, in Density Functional Theory and Its Applications to Materials, ed. by V.E.V. Doren, K.V. Alsenoy, P. Geerlings (American Institute of Physics, Melville, 2001)
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77(18), 3865 (1996); Ibid. 78, 1396(E) (1997)
J. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 80, 891 (1998)
V.V. Karasiev, R.S. Jones, S.B. Trickey, F.E. Harris, Phys. Rev. B 80, 245120 (2009)
V.V. Karasiev, R.S. Jones, S.B. Trickey, F.E. Harris, Phys. Rev. B 87, 239903 (2013)
V. Karasiev, S. Trickey, Comput. Phys. Commun. 183(12), 2519 (2012)
Y.A. Wang, E.A. Carter, in Theoretical Methods in Condensed Phase Chemistry, ed. by S.D. Schwartz (Kluwer, Dordrecht, 2000), chap. 5, p. 117
J.C. Snyder, M. Rupp, K. Hansen, K.R. Mueller, K. Burke, Phys. Rev. Lett. 108, 253002 (2012)
M. Levy, J. Perdew, Phys. Rev. A 32, 2010 (1985)
J.P. Perdew, S. Kurth, in A Primer in Density Functional Theory, ed. by C. Fiolhais, F. Nogueira, M.A.L. Marques (Springer, Berlin/Heidelberg, 2003), pp. 1–55
O. Gunnarsson, B. Lundqvist, Phys. Rev. B 13, 4274 (1976)
D. Langreth, J. Perdew, Solid State Commun. 17, 1425 (1975)
M. Ernzerhof, K. Burke, J.P. Perdew, in Recent Developments and Applications in Density Functional Theory, ed. by J.M. Seminario (Elsevier, Amsterdam, 1996)
R. Jones, O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989)
K. Burke, J. Perdew, D. Langreth, Phys. Rev. Lett. 73, 1283 (1994)
A.C. Cancio, C.Y. Fong, J.S. Nelson, Phys. Rev. A 62, 062507 (2000)
H. Eschrig, Phys. Rev. B 82, 205120 (2010)
A. Theophilou, J. Phys. C 12, 5419 (1979)
E. Gross, L. Oliveira, W. Kohn, Phys. Rev. A 37, 2809 (1988)
L. Oliveira, E. Gross, W. Kohn, Phys. Rev. A 37, 2821 (1988)
A. Nagy, Phys. Rev. A 57, 1672 (1998)
N.I. Gidopoulos, P.G. Papaconstantinou, E.K.U. Gross, Phys. Rev. Lett. 88, 033003 (2002)
F. Perrot, Phys. Rev. A 20, 586 (1979)
F. Perrot, M.W.C. Dharma-wardana, Phys. Rev. A 30, 2619 (1984)
F. Perrot, M.W.C. Dharma-wardana, Phys. Rev. B 62(24), 16536 (2000)
R.G. Dandrea, N.W. Ashcroft, A.E. Carlsson, Phys. Rev. B 34(4), 2097 (1986)
J. Perdew, in Density Functional Method in Physics, ed. by R. Dreizler, J. da Providencia. NATO Advanced Study Institute, Series B: Physics, vol. 123 (Plenum Press, New York, 1985)
S. Kurth, J.P. Perdew, in Strongly Coupled Coulomb Systems, ed. by G.J. Kalman, J.M. Rommel, K. Blagoev (Plenum Press, New York, 1998)
J.P. Perdew, Int. J. Quantum Chem. 28(Suppl. 19), 497 (1985)
M. Greiner, P. Carrier, A. Görling, Phys. Rev. B 81, 155119 (2010)
V.V. Karasiev, T. Sjostrom, S.B. Trickey, Phys. Rev. B 86, 115101 (2012)
K.U. Plagemann, P. Sperling, R. Thiele, M.P. Desjarlais, C. Fortmann, T. Döppner, H.J. Lee, S.H. Glenzer, R. Redmer, New J. Phys. 14(5), 055020 (2012)
Acknowledgements
We would like to thank the Institute for Pure and Applied Mathematics for organization of Workshop IV: Computational Challenges in Warm Dense Matter and for hosting APJ during the Computational Methods in High Energy Density Physics long program. APJ thanks the U.S. Department of Energy (DE-FG02-97ER25308), SP and KB thank the National Science Foundation (CHE-1112442), and SP and EKUG thank European Community’s FP7, CRONOS project, Grant Agreement No. 280879.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Pribram-Jones, A., Pittalis, S., Gross, E.K.U., Burke, K. (2014). Thermal Density Functional Theory in Context. In: Graziani, F., Desjarlais, M., Redmer, R., Trickey, S. (eds) Frontiers and Challenges in Warm Dense Matter. Lecture Notes in Computational Science and Engineering, vol 96. Springer, Cham. https://doi.org/10.1007/978-3-319-04912-0_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-04912-0_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-04911-3
Online ISBN: 978-3-319-04912-0
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)