Skip to main content

Ion-Based Liquid Crystals: From Well-Defined Self-Organized Nanostructures to Applications

  • Chapter
  • First Online:
Book cover Nanoscience with Liquid Crystals

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Recent progress in the chemistry of ion-based liquid crystals and related materials based on anion-responsive π-conjugated molecules is summarized. Thermotropic liquid crystals with highly ordered positively and negatively charged species are promising materials as organic semiconductors that show fascinating properties compared to those of electronically neutral species. The achievement of ion-based liquid crystals requires the preparation of appropriate charged building subunits, in particular, planar anionic species, which can be obtained by the complexation of electronically neutral anion-responsive π-conjugated molecules. The author’s group has fabricated a variety of ion-based organized structures as liquid crystals comprising pyrrole-based anion receptor molecules. The charge-carrier transporting properties exhibited by some of the obtained materials highlight their potential utility in future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Tsoucaris (ed.), Current Challenges on Large Supramolecular Assemblies, NATO Science Series (Kluwer, South Holland, 1999)

    Google Scholar 

  2. A. Ciferri (ed.), Supramolecular Polymers (Marcel Dekker, New York, 2000)

    Google Scholar 

  3. F. Würthner (ed.), Supramolecular Dye Chemistry, Topics in Current Chemistry, vol. 258 (Springer, Berlin, 2005), pp. 1–324

    Google Scholar 

  4. J.L. Atwood, J.W. Steed (eds.), Organic Nanostructures (Wiley, Weinheim, 2007)

    Google Scholar 

  5. P.A. Gale, J.W. Steed (eds.), Supramolecular Chemistry: From Molecules to Nanomaterials (Jon Wiley & Sons, Chichester, 2012)

    Google Scholar 

  6. W. Hamley, Introduction to Soft Matter—Polymers, Colloids, Amphiphiles and Liquid Crystals (John Wiley & Sons, West Sussex, 2000)

    Google Scholar 

  7. I. Dierking, Textures of Liquid Crystals (Wiley, Weinheim, 2003)

    Google Scholar 

  8. T. Kato, N. Mizoshita, K. Kishimoto, Functional liquid-crystalline assemblies: self-organized soft materials. Angew. Chem. Int. Ed. 45, 38–68 (2006)

    Article  Google Scholar 

  9. T. Kato (ed.), Liquid Crystalline Functional Assemblies and Their Supramolecular Structures, Structure and Bonding, vol. 128 (Springer, Berlin, 2008), pp. 1–237

    Google Scholar 

  10. T. Kato, T. Yasuda, Y. Kamikawa, M. Yoshio, Self-assembly of functional columnar liquid crystals. Chem. Commun. 12, 729–739 (2009)

    Google Scholar 

  11. B.R. Kaafarani, Discotic liquid crystals for opto-electronic applications. Chem. Mater. 23, 378–396 (2011)

    Article  Google Scholar 

  12. S. Kumar, Chemistry of Discotic Liquid Crystals: From Monomers to Polymers; The Liquid Crystals Book Series (CRC Press, Boca Raton, 2011)

    Google Scholar 

  13. T. Welton, Room-temperature ionic liquids. solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2084 (1999)

    Article  Google Scholar 

  14. P. Wasserscheid, W. Keim, Ionic liquids—new solutions for transition metal catalysis. Angew. Chem. Int. Ed. 39, 3772–3789 (2000)

    Article  Google Scholar 

  15. H. Ohno, Functional design of ionic liquids. Bull. Chem. Soc. Jpn. 79, 1665–1680 (2006)

    Article  Google Scholar 

  16. M.A.P. Martins, C.P. Frizzo, D.N. Moreira, N. Zanatta, H.G. Bonacorso, Ionic liquids in heterocyclic synthesis. Chem. Rev. 108, 2015–2050 (2008)

    Article  Google Scholar 

  17. P. Hapiot, C. Lagrost, Electrochemical reactivity in room-temperature ionic liquids. Chem. Rev. 108, 2238–2264 (2008)

    Article  Google Scholar 

  18. R. Giernoth, Task-specific ionic liquids. Angew. Chem. Int. Ed. 49, 2834–2839 (2010)

    Article  Google Scholar 

  19. K. Binnemans, Ionic liquid crystals. Chem. Rev. 105, 4148–4204 (2005)

    Article  Google Scholar 

  20. T.L. Greaves, F.J. Drummond, Ionic liquids as amphiphile self-assembly media. Chem. Soc. Rev. 37, 1709–1726 (2008)

    Article  Google Scholar 

  21. K.V. Axenov, S. Laschat, Thermotropic ionic liquid crystals. Materials 4, 206–259 (2011)

    Article  ADS  Google Scholar 

  22. A. Bianchi, K. Bowman-James, E. García-España (eds.), Supramolecular Chemistry of Anion (Wiley, New York, 1997)

    Google Scholar 

  23. R.P. Singh, B.A. Moyer (eds.), Fundamentals and Applications of Anion Separation (Kluwer, New York, 2004)

    Google Scholar 

  24. I. Stibor (ed.), Anion Sensing, Topics in Current Chemistry, vol. 255 (Springer, Berlin, 2005), pp. 1–238

    Google Scholar 

  25. J.L. Sessler, P.A. Gale, W.-S. Cho, Anion Receptor Chemistry (RSC, UK, 2006)

    Google Scholar 

  26. R. Vilar (ed.), Recognition of Anions, Structure and Bonding, vol. 129 (Springer, Berlin, 2008), pp. 1–252

    Google Scholar 

  27. P.A. Gale, W. Dehaen (eds.), Anion Recognition by Supramolecular Chemistry, Topics in Heterocyclic Chemistry, vol. 24 (Springer, Berlin, 2010), pp. 1–370

    Google Scholar 

  28. K. Bowman-James, A. Bianchi, E. García-España (eds.), Anion Coordination Chemistry (Wiley, Weinheim, 2011)

    Google Scholar 

  29. B. Dong, H. Maeda, Ion-based materials comprising planar charged species. Chem. Commun. 49, 4085–4099 (2013)

    Article  Google Scholar 

  30. H. Maeda, Y. Bando, Recent progress in research on anion-responsive pyrrole-based π-conjugated acyclic molecules. Chem. Commun. 49, 4100–4113 (2013)

    Article  Google Scholar 

  31. H. Maeda. Supramolecular chemistry of pyrrole-based π-conjugated molecules. Bull. Chem. Soc. Jpn. 86, 1359--1399 (2013)

    Google Scholar 

  32. H. Maeda, Y. Kusunose, Dipyrrolyldiketone difluoroboron complexes: novel anion sensors with C-H···X interactions. Chem. Eur. J. 11, 5661–5666 (2005)

    Article  Google Scholar 

  33. H. Maeda, Y. Haketa, T. Nakanishi, Aryl-substituted C3-bridged oligopyrroles as anion receptors for formation of supramolecular organogels. J. Am. Chem. Soc. 129, 13661–13674 (2007)

    Article  Google Scholar 

  34. H. Maeda, Y. Ito, Y. Haketa, N. Eifuku, E. Lee, M. Lee, T. Hashishin, K. Kaneko, Solvent-assisted organized structures based on amphiphilic anion-responsive π-conjugated systems. Chem. Eur. J. 15, 3706–3719 (2009)

    Article  Google Scholar 

  35. H. Maeda, Y. Terashima, Y. Haketa, A. Asano, Y. Honsho, S. Seki, M. Shimizu, H. Mukai, K. Ohta, Discotic columnar mesophases derived from ‘rod-like’ π-conjugated anion-responsive acyclic oligopyrroles. Chem. Commun. 46, 4559–4561 (2010)

    Article  Google Scholar 

  36. H. Maeda, Y. Bando, Y. Haketa, Y. Honsho, S. Seki, H. Nakajima, N. Tohnai, Electronic and optical properties in the solid-state molecular assemblies of anion-responsive pyrrole-based π-conjugated systems. Chem. Eur. J. 16, 10994–11002 (2010)

    Article  Google Scholar 

  37. Y. Haketa, S. Sasaki, N. Ohta, H. Masunaga, H. Ogawa, N. Mizuno, F. Araoka, H. Takezoe, H. Maeda, Oriented salts: dimension-controlled charge-by-charge assemblies from planar receptor–anion complexes. Angew. Chem. Int. Ed. 49, 10079–10083 (2010)

    Article  Google Scholar 

  38. H. Maeda, K. Naritani, Y. Honsho, S. Seki, Anion modules: building blocks of supramolecular assemblies by combination with π-conjugated anion receptors. J. Am. Chem. Soc. 133, 8243–8896 (2011)

    Article  Google Scholar 

  39. Y. Haketa, S. Sakamoto, K. Chigusa, T. Nakanishi, H. Maeda, Synthesis, crystal structures, and supramolecular assemblies of pyrrole-based anion receptors bearing modified pyrrole β-substituents. J. Org. Chem. 76, 5177–5184 (2011)

    Article  Google Scholar 

  40. B. Dong, Y. Terashima, Y. Haketa, H. Maeda, Charge-based assemblies comprising planar receptor–anion complexes with bulky alkylammonium cations. Chem. Eur. J. 18, 3460–3463 (2012)

    Article  Google Scholar 

  41. Y. Bando, S. Sakamoto, I. Yamada, Y. Haketa, H. Maeda, Charge-based and charge-free molecular assemblies comprising π-extended derivatives of anion-responsive acyclic oligopyrroles. Chem. Commun. 48, 2301–2303 (2012)

    Article  Google Scholar 

  42. Y. Haketa, Y. Honsho, S. Seki, H. Maeda, Ion materials comprising planar charged species. Chem. Eur. J. 18, 7016–7020 (2012)

    Article  Google Scholar 

  43. B. Dong, T. Sakurai, Y. Honsho, S. Seki, H. Maeda, Cation modules as building blocks forming supramolecular assemblies with planar receptor–anion complexes. J. Am. Chem. Soc. 135, 1284–1287 (2013)

    Article  Google Scholar 

  44. Y. Terashima, M. Takayama, K. Isozaki, H. Maeda, Ion-based materials of boron-modified dipyrrolyldiketones as anion receptors. Chem. Commun. 49, 2506–2508 (2013)

    Article  Google Scholar 

  45. Y. Bando, T. Sakurai, S. Seki, H. Maeda, Corannulene-fused anion-responsive π-conjugated molecules that form self-assemblies with unique electronic properties. Chem. Asian J. 8, 2088–2095 (2013)

    Article  Google Scholar 

  46. Y. Terashima, T. Sakurai, Y. Bando, S. Seki, H. Maeda, Assembled structures of anion-responsive π-systems tunable by alkyl/perfluoroalkyl segments in peripheral side chains. Chem. Mater. 25, 2656–2662 (2013)

    Article  Google Scholar 

  47. H. Maeda, W. Hane, Y. Bando, Y. Terashima, Y. Haketa, H. Shibaguchi, T. Kawai, M. Naito, K. Takaishi, M. Uchiyama, A. Muranaka, Chirality induction by formation of assembled structures based on anion-responsive π-conjugated molecules. Chem. Eur. J. 19, 16263--16271 (2013)

    Google Scholar 

  48. B. Dong, T. Sakurai, Y. Bando, S. Seki, K. Takaishi, M. Uchiyama, A. Muranaka, H. Maeda, Ion-based materials derived from positively and negatively charged chloride complexes of π-conjugated molecules. J. Am. Chem. Soc. 135, 14797--14805 (2013)

    Google Scholar 

  49. B.W. Laursen, F.C. Krebs, Synthesis of a triazatriangulenium salt. Angew. Chem. Int. Ed. 39, 3432–3434 (2000)

    Article  Google Scholar 

  50. B.W. Laursen, F.C. Krebs, Synthesis, structure, and properties of azatriangulenium salts. Chem. Eur. J. 7, 1773–1783 (2001)

    Article  Google Scholar 

  51. Y. Yamamoto, T. Fukushima, Y. Suna, N. Ishii, A. Saeki, S. Seki, S. Tagawa, M. Taniguchi, T. Kawai, T. Aida, Photoconductive coaxial nanotubes of molecularly connected electron donor and acceptor layers. Science 314, 1761–1764 (2006)

    Article  ADS  Google Scholar 

  52. A. Saeki, S. Seki, T. Sunagawa, K. Ushida, S. Tagawa, Charge-carrier dynamics in polythiophene films studied by in situ measurement of flash-photolysis time-resolved microwave conductivity (FP-TRMC) and transient optical spectroscopy (TOS). Philos. Mag. 86, 1261–1276 (2006)

    Article  ADS  Google Scholar 

  53. T. Umeyama, N. Tezuka, S. Seki, Y. Matano, M. Nishi, K. Hirao, H. Lehtivuori, V.N. Tkachenko, H. Lemmetyinen, Y. Nakao, S. Sakaki, H. Imahori, Selective formation and efficient photocurrent generation of [70]fullerene–single-walled carbon nanotube composites. Adv. Mater. 22, 1767–1770 (2010)

    Article  Google Scholar 

  54. Y. Yasutani, A. Saeki, T. Fukumatsu, T. Koizumi, S. Seki, Unprecedented high local charge-carrier mobility in P3HT revealed by direct and alternating current methods. Chem. Lett. 42, 19–21 (2013)

    Article  Google Scholar 

  55. K. Sato, S. Takeuchi, S. Arai, M. Yamaguchi, T. Yamagishi, 4, 6-Bis(imidazolio)pyrimidine as a new anion receptor. Heterocycles 73, 209–215 (2007)

    Article  Google Scholar 

  56. A. Rit, T. Pape, F.E. Hahn, Self-assembly of molecular cylinders from polycarbene ligands and AgI or AuI. J. Am. Chem. Soc. 132, 4572–4573 (2010)

    Article  Google Scholar 

  57. H. Maeda, Y. Ito, Y. Kusunose, T. Nakanishi, Dipyrrolylpyrazoles: anion receptors in protonated form and efficient building blocks for organized structures. Chem. Commun. 1136–1138 (2007)

    Google Scholar 

  58. H. Maeda, K. Chigusa, T. Sakurai, K. Ohta, S. Uemura, S. Seki, Ion-pair-based assemblies comprising pyrrole–pyrazole hybrids. Chem. Eur. J. 19, 9224–9233 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The contributions reported herein have been supported by PRESTO, Japan Science and Technology Agency (JST) (“Structure Control and Function”, 2007–2011), Grants-in-Aid for Young Scientists (B) (No. 21750155) and (A) (No. 23685032) and Scientific Research in a Priority Area “Super-Hierarchical Structures” (No. 18039038, 19022036) from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), the matching fund subsidies for private universities from the MEXT, 2003--2008 and 2009--2014, and the Ritsumeikan Global Innovation Research Organization (R-GIRO) project, 2008--2013. The author thanks all the authors and the collaborators described in the acknowledgement in the previous publications, in particular, Prof. Atsuhiro Osuka and his group members for single-crystal X-ray analysis, Dr. Takashi Nakanishi, NIMS, for his kind help with various analyses of molecular assemblies, Prof. Shu Seki, Osaka University, and his group members for electrical conductivity measurements, Prof. Hitoshi Tamiaki, Ritsumeikan University, for various measurements, and all the group members, especially, Dr. Yohei Haketa and Dr. Bin Dong, for their contributions on ion-based materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromitsu Maeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 © The Author(s)

About this chapter

Cite this chapter

Maeda, H. (2014). Ion-Based Liquid Crystals: From Well-Defined Self-Organized Nanostructures to Applications. In: Li, Q. (eds) Nanoscience with Liquid Crystals. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-04867-3_9

Download citation

Publish with us

Policies and ethics