Discotic Liquid Crystalline Blends for Nano-Structure Formation Toward Bulk Heterojunction Active Layer in Organic Photovoltaics

  • Yo Shimizu
Part of the NanoScience and Technology book series (NANO)


Liquid crystalline semiconductor is a new category of organic semiconductors and lots of studies on the materials and application to electronic devices have been carried out. In particular, organic thin film photovoltaics is an interesting research field by use of liquid crystalline semiconductors because of the characteristic properties of liquid crystals. In this chapter, the miscibility in liquid crystals and the related issues on the application of liquid crystalline semiconductors are overviewed to give an insight for their possible contribution to the drastic improvement of organic photovoltaics technology including the fabrication by printed electronics.


Liquid Crystal Active Layer Power Conversion Efficiency Nematic Phase External Quantum Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M.O. O’Neill, S.M. Kelly, Ordered materials for organic electronic and photonics. Adv. Mater. 23, 566–584 (2011)CrossRefGoogle Scholar
  2. 2.
    M. Funahashi, Development of liquid-crystalline semiconductors with high carrier mobilities and their application to thin-film transistors. Polym. J. 41, 459–469 (2009)CrossRefGoogle Scholar
  3. 3.
    Y. Shimizu, K. Oikawa, K. Nakayama, D. Guillon, Mesophase semiconductors in field effect transistors. J. Mater. Chem. 17, 4223–4229 (2007)CrossRefGoogle Scholar
  4. 4.
    H. Iino, J. Hanna, Liquid crystalline thin films as a precursor for polycrystalline thin films aimed at field effect transistors. J. Appl. Phys. 109, 074505-1-5 (2011)Google Scholar
  5. 5.
    H. Iino, J. Hanna, Availability of liquid crystallinity in solution processing for polycrystalline thin films. Adv. Mater. 23, 1748–1751 (2011)CrossRefGoogle Scholar
  6. 6.
    H. Iino, J. Hanna, Availability of liquid crystalline molecules for polycrystalline organic semiconductor thin films. Jpn. J. Appl. Phys. 45, L867–L870 (2006)CrossRefADSGoogle Scholar
  7. 7.
    D. Adam, P. Schuhmacher, J. Simmerer, L. Häussling, K. Siemensmeyer, K.H. Etzbacj, H. Ringsdorf, D. Haarer, Fast photoconduction in the highly ordered columnar phase of a discotic liquid crystal. Nature 371, 141–143 (1994)CrossRefADSGoogle Scholar
  8. 8.
    M. Funahashi, J. Hanna, High carrier mobility up to 0.1 cm2 V−1 s−1 at ambient temperatures in thiophene-based smectic liquid crystals. Adv. Mater. 17, 594–598 (2005)CrossRefGoogle Scholar
  9. 9.
    H. Maeda, M. Funahashi, J. Hanna, Effect of domain boundary on carrier transport of calamitic liquid crystalline photoconductive materials. Mol. Cryst. Liq. Cryst. 346, 183–192 (2000)CrossRefGoogle Scholar
  10. 10.
    M. Yoneya, Toward rational design of complex nanostructured liquid crystals. Chem. Rec. 11, 66–76 (2011)CrossRefGoogle Scholar
  11. 11.
    T. Kato, N. Mizoshita, K. Kishimoto, Functional liquid-crystalline assemblies: self-organized soft materials. Angew. Chem. Int. Ed. 45, 38–68 (2006)CrossRefGoogle Scholar
  12. 12.
    W. Pisula, M. Zorn, J.-Y. Chang, K. Müllen, R. Zentel, Liquid crystalline ordering and charge transport in semiconducting materials. Macromol. Rapid Commun. 30, 1179–1202 (2009)CrossRefGoogle Scholar
  13. 13.
    S. Laschat, A. Baro, N. Steinke, F. Giesselmann, C. Hägele, G. Scalia, R. Judele, E. Kapatsina, S. Sauer, A. Scheivogel, M. Tosini, Discotic liquid crystals: from tailor-made synthesis to plastic electronics. Angew. Chem. Int. Ed. 46, 4832–4887 (2007)CrossRefGoogle Scholar
  14. 14.
    S. Sergeyev, W. Pisula, Y.H. Geerts, Discotic liquid crystals: a new generation of organic semiconductors. Chem. Soc. Rev. 36, 1902–1929 (2007)CrossRefGoogle Scholar
  15. 15.
    C. Destrade, N.-H. Tinh, H. Gasparoux, J. Malthete, A.M. Levelut, A. Disk-Like, Mesogens: a classification. Mol. Cryst. Liq. Cryst. 71, 111–135 (1981)CrossRefGoogle Scholar
  16. 16.
    E.O. Arkainen, N. Boden, R.J. Bushby, O.R. Lozman, J.G. Vinter, A. Wood, Complimentary polytopic interaction. Angew. Chem. Int. Ed. 39, 2333–2336 (2000)CrossRefGoogle Scholar
  17. 17.
    J.G. Vinter, Extended electron distributions applied to the molecular mechanics of some intermolecular interactions. J. Comput.-Aided Mol. Des. 8, 653–668 (1994)CrossRefADSGoogle Scholar
  18. 18.
    C.A. Hunter, Aromatic-aromatic interactions: electrostatic or charge transfer? Angew. Chem. Int. Ed. Engl. 32, 1584–1586 (1993)CrossRefGoogle Scholar
  19. 19.
    T. Kreouzis, K. Scott, K.J. Donnovan, N. Boden, R.J. Bushby, O.R. Lozman, Q. Liu, Enhanced electronic transport properties in complimentary binary discotic liquid crystal systems. Chem. Phys. 262, 489–497 (2000)CrossRefADSGoogle Scholar
  20. 20.
    N. Boden, R.J. Bushby, J. Clements, B. Movaghar, K.J. Donovan, T. Kreouzis, Mechanism of charge transport in discotic liquid crystals. Phys. Rev. B 52, 13274–13280 (1995)CrossRefADSGoogle Scholar
  21. 21.
    R.J. Bushby, S.D. Evance, O.R. Lozman, A. McNeill, B. Movaghar, Enhanced charge conduction in discotic liquid crystals. J. Mater. Chem. 11, 1982–1984 (2001)CrossRefGoogle Scholar
  22. 22.
    B.R. Wegewijs, L.D.A. Siebbeles, N. Boden, R.J. Busgby, B. Movaghar, O.R. Lozman, Q. Liu, A. Pecchia, L. A. Mason, Charge-carrier mobilities in binary mixtures of discotic triphenylene derivatives as a function of temperature. Phy. Rev. B 65, 245112-1-8 (2002)Google Scholar
  23. 23.
    A. Pecchia, O.R. Lozman, B. Movaghar, N. Boden, R.J. Bushby, Photoconductive transients and one-dimentional charge carrier dynamics in discotic liquid crystals. Phys. Rev. B 65, 104204-1-10 (2002)Google Scholar
  24. 24.
    N. Boden, R.J. Bushby, G. Cooke, O.R. Lozman, Z. Lu, CPI: a recipe for improving applicable properties of discotic liquid crystals. J. Am. Chem. Soc. 123, 7915–7916 (2001)CrossRefGoogle Scholar
  25. 25.
    R.J. Bushby, K.J. Donovan, T. Kreouzis, O.R. Lozman, Molecular engineering of tripheynlene-based disotic liquid crystal conductors. Opto-Electron. Rev. 13, 269–279 (2005)Google Scholar
  26. 26.
    M. Inoue, H. Monobe, M. Ukon, V.F. Petrov, T. Watanabe, A. Kumano, Y. Shimizu, Fast charged carrier mobility of a triphenylene-based polymer film possessing nematic order. Opto-Electron. Rev. 13, 303–308 (2005)Google Scholar
  27. 27.
    T.-M. Huang, R.V. Talroze, T. Kyu, Eutectic mesophase transitions and induced crystalline phase in mixtures of hexagonal columnar liquid crystal and mesogenic diacrylate. J. Phys. Chem. B 114, 13031–13041 (2010)CrossRefGoogle Scholar
  28. 28.
    R.W. Date, D.W. Bruce, Shape amphiphiles: mixing rods and disks in liquid crystals. J. Am. Chem. Soc. 125, 9012–9013 (2003)CrossRefGoogle Scholar
  29. 29.
    G. Zucchi, B. Donnio, Y.H. Geerts, Remarkable miscibility between disk- and lathlike mesogens. Chem. Mater. 17, 4273–4277 (2005)CrossRefGoogle Scholar
  30. 30.
    G. Zucchi, P. Viville, B. Donnio, A. Vlad, S. Melinte, M. Mondeshki, R. Graf, H.W. Spiess, Y.H. Geerts, R. Lazzaroni, Miscibility between differently shaped mesogens: structural and morphological study of a phthalocyanine-perylene binary system. J. Phys. Chem. B 113, 5448–5457 (2009)CrossRefGoogle Scholar
  31. 31.
    B. Brandl, J.H. Wendorff, Eutectic mixtures with plastic columnar discotics: molecular structure, phase morphology and kinetics of phase separation. Liq. Cryst. 32, 553–563 (2005)CrossRefGoogle Scholar
  32. 32.
    A. Facchetti, π-Conjugated polymers for organic electronics and photovoltaic cell applications. Chem. Mater. 23, 733–758 (2011)CrossRefGoogle Scholar
  33. 33.
    Y. Liang, L. Yu, A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance. Acc. Chem. Res. 43, 1227–1236 (2010)CrossRefGoogle Scholar
  34. 34.
    B. Walker, C. Kim, T.-Q. Nguyen, Small molecule solution-processed bulk heterojunction solar cells. Chem. Mater. 23, 470 (2010)CrossRefGoogle Scholar
  35. 35.
    A.W. Hains, Z. Laing, M.A. Woodhouse, B.A. Gregg, Molecular semiconductors in organic photovoltaic cells. Chem. Rev. 110, 6689–6735 (2010)CrossRefGoogle Scholar
  36. 36.
    A. Mishra, P. Bäuerle, Small molecule organic semiconductors on the move: promises for future solar energy technology. Angew. Chem. Int. Ed. 51, 2020–2067 (2010)CrossRefGoogle Scholar
  37. 37.
    Y. Sun, G.C. Welch, W.-L. Leong, C.J. Takacs, G.C. Bazan, A.J. Heeger, Solution-processed small-molecule solar cells with 6.7 % efficiency. Nat. Mater. 11, 44–48 (2012)CrossRefADSGoogle Scholar
  38. 38.
    Z. Li, G. He, X. Wan, Y. Liu, J. Zhou, G. Long, Y. Zuo, M. Zhang, Y. Chen, Solution processable rhodanine-based small molecule organic photovoltaic cells with a power conversion efficiency of 6.1 %. Adv. Energy Mater. 2, 74–77 (2012)CrossRefGoogle Scholar
  39. 39.
    C. Müller, J. Bergqvist, K. Vandewal, K. Tvingstedt, A.S. Anselmo, R. Magnusson, M.I. Alonso, E. Moons, H. Arwin, M. Campoy-Quiles, O. Inganäs, Phase behaviour of liquid-crystalline polymer/fullerene organic photovoltaic blends: thermal stability and miscibility. J. Mater. Chem. 21, 10676–10684 (2011)CrossRefGoogle Scholar
  40. 40.
    A.C. Mayer, M.F. Toney, S.R. Scully, J. Rivenay, C.J. Brabec, M. Scharber, M. Koppe, M. Heeney, I. McCulloch, M.D. McGehee, Bimolecular crystals of fullerenes in conjugated polymers and the implications of molecular mixing for solar cells. Adv. Funct. Mater. 19, 1173–1179 (2009)CrossRefGoogle Scholar
  41. 41.
    F. Würthner, K. Meerholz, System chemistry approach in organic photovoltaics. Chem. Eur. J. 16, 9366–9373 (2010)CrossRefGoogle Scholar
  42. 42.
    S.R. Scully, M.D. McGehee, in Flexible Electronics: Materials and Applications, ed. by W.S. Wong, A. Salleo (Springer, New York, 2009)Google Scholar
  43. 43.
    G. Dennler, M.C. Scharber, C.J. Brabec, Polymer-fullerene bulk heterojunction solar cells. Adv. Mater. 21, 1232–1338 (2009)CrossRefGoogle Scholar
  44. 44.
    M.A. Brady, G.M. Su, M.L. Chabinyc, Recent progress in the morphology of bulk heterojunction photovoltaics. Soft Matter 7, 11065–11077 (2011)CrossRefADSGoogle Scholar
  45. 45.
    K. Petritsch, R.H. Friend, A. Lux, G. Rozenberg, S.C. Moratti, A.B. Holmes, Liquid crystalline phthalocyanines in organic solar cells. Syn. Met 102, 1776–1777 (1999)CrossRefGoogle Scholar
  46. 46.
    L. Schmidt-Mende, A. Fechtenkötter, K. Müllen, E. Moons, R.H. Friend, J.D. MacKenzie, Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science 293, 1119–1122 (2001)CrossRefADSGoogle Scholar
  47. 47.
    L. Schmidt-Mende, A. Fechtenkötter, K. Müllen, R.H. Friend, J.D. MacKenzie, Efficient organic photovoltaics from soluble discotic liquid crystalline materials. Physica E 14, 263–267 (2002)CrossRefADSGoogle Scholar
  48. 48.
    L. Schmidt-Mende, M. Watson, K. Müllen, R.H. Friend, Organic thin film photovoltaic devices from discotic materials. Mol. Cryst. Liq. Cryst. 396, 73–90 (2003)CrossRefGoogle Scholar
  49. 49.
    J. Li, M. Kastler, W. Pisula, J.W.F. Robertson, D. Wasserfallen, A. Clive, G. Grimsdale, J. Wu, K. Müllen, Organic bulk-heterojunction photovoltaics based on alkyl substituted discotics. Adv. Funct. Mater. 17, 2528–2533 (2007)CrossRefGoogle Scholar
  50. 50.
    H.C. Hesse, J. Weickert, M. Al-Hussein, L. Dössel, X. Feng, K. Müllen, L. Schmidt-Mende, Discotic materials for organic solar cells: effect of chemical structure on assembly and performance. Solar Energy Mater. Solar Cells 94, 560–567 (2010)CrossRefGoogle Scholar
  51. 51.
    H. Iino, J. Hanna, R.J.Bushby, B. Movaghar, B.J. Whitaker, M.J. Cook, Very high time-of-flight mobility in the columnar phases of a discotic liquid crystals. Appl. Phys Lett. 87, 132102-1-3 (2005)Google Scholar
  52. 52.
    H. Iino, Y. Takayashiki, J. Hanna, R.J. Bushby, Fast ambipolar carrier transport and easy homeotropic alignment in a metal-free phthalocyanine derivative. Jpn. J. Appl. Phys. 44, L1310–L1313 (2005)CrossRefADSGoogle Scholar
  53. 53.
    Y. Miyake, Y. Shiraiwa, K. Okada, H. Monobe, T. Hori, N. Yamasaki, H. Yoshida, A. Fujii, M. Ozaki, Y. Shimizu, High carrier mobility up to 1.4 cm2 V−1 s−1 in non-peripheral octahexyl phthalocyanine. Appl. Phys. Express 4, 021604-1-3 (2011)Google Scholar
  54. 54.
    F. Nekelson, Q.D. Dao, T. Hori, T. Nakao, H.Yoshida, A. Fujii, M. Ozaki, Y. Shimizu, A binary mixture of a non-peripheral octahexylphthalocyanine and PCBM: thermotropic behavior and carrier mobility (submitted)Google Scholar
  55. 55.
    T. Hori, T. Masuda, N. Fukuoka, T. Hayashi, Y. Miyake, T. Kamikado, H. Yoshida, A. Fujii, Y. Shimizu, M. Ozaki, Non-peripheral octahexylphthalocyanine doping effects in bulk heterojunction polymer solar cells. Org. Electron. 13, 335–340 (2012)CrossRefGoogle Scholar
  56. 56.
    S. Jeong, Y. Kwon, B.-D. Choi, H. Ade, Y.-S. Han, Improved efficiency of bulk heterojunction poly(3-hexylthiophene):[6,6]-phenyl-c61-butyric acid methyl ester photovoltaic devices using discotic liquid crystal additives. Appl. Phys. Lett. 96, 183305-1-3 (2010)Google Scholar
  57. 57.
    T. Masuda, T. Hori, K. Fukumura, Y. Miyake, Q.D. Dao, T. Hayashi, T. Kamikado, H. Yoshida, A. Fujii, Y. Shimizu, M. Ozaki, Photovoltaic properties of 1,4,8,11,15,18,22,25-octaalkylphthalocyanine doped polymer bulk heterojunction solar cells. Jpn. J. Appl. Phys. 51, 02BK15-1-4 (2012)Google Scholar
  58. 58.
    T. Hori, Y. Miyake, T. Masuda, T. Hayashi, K. Fukumura, H. Yoshida, A. Fujii, Y. Shimizu, M. Ozaki, Dependence of alkyl-substituent length for bulk heterojunction solar cells utilizing 1,4,8,11,15,18,22,25-octa-alkylphthalocyanine. J. Photon. Energy 2, 021004-1-7 (2012)Google Scholar
  59. 59.
    Q.-D. Dao, T. Hori, K. Fukumura, T. Masuda, T. Kamikado, A. Fujii, Y. Shimizu, M. Ozaki, Effects of processing additives on nanoscale phase separation, crystallization and photovoltaic performance of solar cells based on mesogenic phthalocyanine. Org. Electron. 14, 2628–2634 (2013)CrossRefGoogle Scholar
  60. 60.
    Q.D. Dao, T. Hori, K. Fukushima, T. Masuda, T. Kamikado, A. Fujii, Y. Shimizu, M. Ozaki, Efficiency enhancement in mesogenic-phthalocyanine-based solar cells with processing additives. Appl. Phys. Lett. 101, 263301-1-3 (2012)Google Scholar
  61. 61.
    Q. Zheng, G. Fang, W. Bai, N. Sun, P. Qin, X. Fan, F. Cheng, L. Yuan, X. Zhao, Efficiency improvement in organic solar cells by inserting a discotic liquid crystal. Solar Energy Mater. Solar Cells 95, 2200–2205 (2011)CrossRefGoogle Scholar
  62. 62.
    A. Varotto, C.-Y. Nam, I. Radivojevic, J.P.C. Tomé, J.A.S. Cavaleiro, C.T. Black, C.M. Drain, Phthalocyanine blends improve bulk heterojunction solar cells. J. Am. Chem. Soc. 132, 2552–2554 (2010)CrossRefGoogle Scholar
  63. 63.
    Q. Sun, L. Dai, X. Zhou, L. Li, and Q. Li, Bilayer- and bulk-heterojunction solar cells using liquid crystalline porphyrins as donors by solution processing. Appl. Phys. Lett. 91, 253505-1-3 (2007)Google Scholar
  64. 64.
    X. Zhou, S.W. Kang, S. Kumar, R.R. Kulkarni, S.Z.D. Cheng, Q. Li, Self-assembly of porphyrin and fullerene supramolecular complex into highly ordered nanostructure by simple thermal annealing. Chem. Mater. 20, 3551–3553 (2008)CrossRefGoogle Scholar
  65. 65.
    Y. Shimizu, Y. Matsuda, F. Nekelson, Y. Miyake, H. Yoshida, A. Fujii, M. Ozaki, Binary systems of discotic liquid crystalline semiconductors toward solution-processing thin film devices. Proc. SPIE 8279, 82790G-1–82790G-8 (2012)Google Scholar
  66. 66.
    Y. Shimizu, Y. Matsuda, T. Nakao, L. Sosa-Vargas, M. Takahashi, H. Yoshida, A. Fujii, M. Ozaki, Unpublished resultsGoogle Scholar
  67. 67.
    M. Shimizu, L. Tauchi, T. Nakagaki, A. Ishikawa, E. Itoh, K. Ohta, Discotic liquid crystals of transition metal complexes 48: synthesis of novel phthalocyanine-fullerene dyads and effect of a methoxy group on their clearing points. J. Porphyrins Phthalocyanines 17, 264–282 (2013)Google Scholar
  68. 68.
    C.L. Wang, W.B. Zhang, H.-J. Sun, R.M. Van Horn, R.R. Kulkarni, C.-C. Tsai, C.-S. Hsu, B. Lotz, X. Gong, S.Z.D. Cheng, A supramolecular, “double-cable” structure with a 12944 helix in a cilumnar porphyrin-c60 dyad and its application in polymer solar cells. Adv. Energy Mater. 2, 1375–1382 (2012)CrossRefGoogle Scholar
  69. 69.
    H. Hayashi, W. Nihashi, T. Umeyama, Y. Matano, S. Seki, Y. Shimizu, H. Imahori, Segregated donor-acceptor columns in liquid crystals that exhibit highly efficient ambipolar charge transport. J. Am. Chem. Soc. 133, 10736–10739 (2011)CrossRefGoogle Scholar
  70. 70.
    M. Ince, M.V. Martínez-Díaz, J. Barberá, T. Torres, Liquid crystalline phthalocyanine-fullerene dyads. J. Mater. Chem. 21, 1531–1536 (2011)CrossRefGoogle Scholar
  71. 71.
    Y.H. Geerts, O. Debever, C. Amato, S. Sergeyev, Synthesis of mesogenic phthalocyanine-C60 donor-acceptor dyads designed for molecular heterojunction photovoltaic devices. Beilstein J. Org. Chem. 5, 1–9 (2009)Google Scholar
  72. 72.
    A. de la Escosura, M.V. Martínez-Díaz, J. Barberá, T. Torres, Self-organization of phthalocyanine-[60]fullerene dyads in liquid crystals. J. Org. Chem. 73, 1475–1480 (2008)CrossRefGoogle Scholar
  73. 73.
    N. Tchebotareva, X. Yin, M.D. Watson, P. Samori, J.P. Rabe, K. Müllen, Ordered architectures of a soluble hexa-peri-hexabenzocolonene-pyrene dyad: thermotropic bulk properties and nanoscale phase segregation at surfaces. J. Am. Chem. Soc. 125, 9734–9739 (2003)CrossRefGoogle Scholar
  74. 74.
    M. Mathews, Q. Li, Chapter 4 in Self-Organized Organic Semiconductors: From Materials to Device Applications, ed. by Q. Li (Wiley, Hoboken, 2011)Google Scholar
  75. 75.
    B.R. Kaafarani, Discotic liquid crystals for opto-electronic applications. Chem. Mater. 23, 378–396 (2011)CrossRefGoogle Scholar

Copyright information

© © The Author(s) 2014

Authors and Affiliations

  1. 1.Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology, Kansai Center (AIST-Kansai)OsakaJapan

Personalised recommendations