Liquid Crystal-Gold Nanoparticle Hybrid Materials

  • Chenming Xue
  • Quan LiEmail author
Part of the NanoScience and Technology book series (NANO)


The interplay between liquid crystals and gold nanoparticles, i.e. liquid crystalline gold nanoparticle materials, is challenging as well as fascinating for creating novel functional materials. The resulting hybrid materials hold great promise in many applications such as displays, optics, optoelectronics, sensors, and metamaterials due to their unique properties. In this chapter, the fundamentals of liquid crystals and gold nanoparticles are introduced, and the intriguing progresses of hybrid materials, although in their early stage, are summarized and discussed. These hybrid materials not only could improve device performances, but also the well-organized gold nanoparticles driven by the intrinsic nature of liquid crystal could contribute to the very interesting research topic of the functional metamaterials, i.e. a class of artificial materials having properties that never exist in nature such as unusual electromagnetic properties (e.g. negative refractive index materials for cloaking devices).


Surface Plasmon Resonance Hybrid Material Nematic Phase Mixed Monolayer Negative Refractive Index Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The preparation of this chapter benefited from the support to Quan Li by the Air Force Office of Scientific Research (AFOSR FA9550-09-1-0254 and FA9550-09-1-0193), the Department of Defense Multidisciplinary University Research Initiative (AFOSR MURI FA9550-06-1-0337 and FA9550-12-1-00370), the Department of Energy (DOE DE-SC0001412), the National Science Foundation (NSF IIP 0750379), the National Aeronautics and Space Adminstration (NASA), Ohio Third Frontier, and the Ohio Board of Regents under its Research Challenge program.


  1. 1.
    Q. Li (ed.), Liquid Crystal Beyond Displays: Chemistry, Physics, and Applications (John Wiley & Sons, New Jersey, 2012)Google Scholar
  2. 2.
    Q. Li (ed.), Intelligent Stimuli-Responsive Materials: From Well-Defined Nanostructures to Applications (John Wiley & Sons, New Jersey, 2013)Google Scholar
  3. 3.
    J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)ADSGoogle Scholar
  4. 4.
    V.M. Shalaev, W.S. Cai, U.K. Chettiar, H.K. Yuan, A.K. Sarychev, V.P. Drachev, A.V. Kildishev, Negative index of refraction in optical metamaterials. Opt. Lett. 30, 3356–3358 (2005)ADSGoogle Scholar
  5. 5.
    P.A. Kossyrev, A.J. Yin, S.G. Cloutier, D.A. Cardimona, D.H. Huang, P.M. Alsing, J.M. Xu, Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix. Nano Lett. 5, 1978–1981 (2005)ADSGoogle Scholar
  6. 6.
    V.K.S. Hsiao, Y.B. Zheng, B.K. Juluri, T.J. Huang, Light-driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystals. Adv. Mater. 20, 3528–3532 (2008)Google Scholar
  7. 7.
    S. Khatua, P. Manna, W.S. Chang, A. Tcherniak, E. Friedlander, E.R. Zubarev, S. Link, Plasmonic nanoparticles-liquid crystal composites. J. Phys. Chem. C 114, 7251–7257 (2010)Google Scholar
  8. 8.
    Z.Y. Tang, N.A. Kotov, One-dimensional assemblies of nanoparticles: preparation, properties, and promise. Adv. Mater. 17, 951–962 (2005)Google Scholar
  9. 9.
    M.L. Curri, R. Comparelli, M. Striccoli, A. Agostiano, Emerging methods for fabricating functional structures by patterning and assembling engineered nanocrystals. Phys. Chem. Chem. Phys. 12, 11197–11207 (2010)Google Scholar
  10. 10.
    K.J. Stebe, E. Lewandowski, M. Ghosh, Oriented assembly of metamaterials. Science 325, 159–160 (2009)Google Scholar
  11. 11.
    K.J.M. Bishop, C.E. Wilmer, S. Soh, B.A. Grzybowski, Nanoscale forces and their uses in self-assembly. Small 5, 1600–1630 (2009)Google Scholar
  12. 12.
    W. Cai, U.K. Chettiar, A.V. Kildishev, V.M. Shalaev, Optical cloaking with metamaterials. Nature Photon 1, 224–227 (2007)ADSGoogle Scholar
  13. 13.
    V.M. Shalaev, Optical negative-index metamaterials. Nature Photon 1, 41–48 (2007)ADSGoogle Scholar
  14. 14.
    P. Collings, M. Hird, Introduction to Liquid Crystals (Taylor & Francis, London, 1997)Google Scholar
  15. 15.
    C. Tschierske, Molecular self-organization of amphotropic liquid crystals. Prog. Polym. Sci. 21, 775–852 (1996)Google Scholar
  16. 16.
    C. Tschierske, Non-conventional liquid crystals: the importance of micro-segregation for self-organization. J. Mater. Chem. 8, 1485–1508 (1998)Google Scholar
  17. 17.
    R. Lipowsky, E. Sackmann (ed.), Handbook of Biological Physics, vol. 1. (Elsevier, Amsterdam, 1995)Google Scholar
  18. 18.
    B. Donnio, S. Buathong, I. Bury, D. Guillon, Liquid crystalline dendrimers. Chem. Soc. Rev. 36, 1495–1513 (2007)Google Scholar
  19. 19.
    A. Skoulios, D. Guillon, Amphiphilic haracter and liquid crystallinity. Mol. Cryst. Liq. Cryst. 165, 317–332 (1988)Google Scholar
  20. 20.
    J. Ma, Q. Li, Smectic Liquid Crystal Semiconductors, in Self-Organized Organic Semiconductors: From Materials to Applications, ed. by Q. Li (John Wiley & Son, New Jersey, 2011)Google Scholar
  21. 21.
    R.P. Lemieux, Chirality transfer in ferroelectric liquid crystals. Acc. Chem. Res. 34, 845–853 (2001)Google Scholar
  22. 22.
    M. Mathews, Q. Li, Self-Organizing Discotic Liquid Crystals as Novel Organic Semiconductors, Chapter 4, in Self-Organized Organic Semiconductors: From Materials to Device Applications, ed. by Q. Li (John Wiley & Son, New Jersey, 2011)Google Scholar
  23. 23.
    S. Kumar, Self-organization of disc-like molecules: chemical aspects. Chem. Soc. Rev. 35, 83–109 (2006)Google Scholar
  24. 24.
    R.A. Reddy, C. Tschierske, Bent-core liquid crystals: polar order, superstructural chirality and spontaneous desymmetrisation in soft matter systems. J. Mater. Chem. 16, 907–961 (2006)Google Scholar
  25. 25.
    M.C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004)Google Scholar
  26. 26.
    Y. Xia, Y. Xiong, B. Lim, S.E. Skrabalak, Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48, 60–103 (2009)Google Scholar
  27. 27.
    P.K. Jain, K.S. Lee, I.H. El-Sayed, M.A. El-Sayed, Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B 110, 7238–7248 (2006)Google Scholar
  28. 28.
    S. Carnie, J.N. Israelachvili, B.A. Pailthorpe, Lipid packing and transbilayer asymmetries of mixed lipid vesicles. Biochim. Biophys. Acta 554, 340–357 (1979)Google Scholar
  29. 29.
    R. Nagarajan, Molecular packing parameter and surfactant self-assembly: the neglected role of the surfactant tail. Langmuir 18, 31–38 (2002)Google Scholar
  30. 30.
    X.L. Zhou, J.M. El Khoury, L.T. Qu, L.M. Dai, Q. Li, A facile synthesis of aliphatic thiol surfactant with tunable length as a stabilizer of gold nanoparticles in organic solvents. J. Colloid Interface Sci. 308, 381–384 (2007)Google Scholar
  31. 31.
    B.E. Brinson, J.B. Lassiter, C.S. Levin, R. Bardhan, N. Mirin, N.J. Halas, Nanoshells made easy: improving Au layer growth on nanoparticle surfaces. Langmuir 24, 14166–14171 (2008)Google Scholar
  32. 32.
    B. Nikoobakht, M.A. El-Sayed, Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 15, 1957–1962 (2003)Google Scholar
  33. 33.
    T.K. Sau, C.J. Murphy, Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J. Am. Chem. Soc. 126, 8648–8649 (2004)Google Scholar
  34. 34.
    B.M. Rosen, C.J. Wilson, D.A. Wilson, M. Peterca, M.R. Imam, V. Percec, Dendron-mediated self-assembly, disassembly, and self-organization of complex systems. Chem. Rev. 109, 6275–6540 (2009)Google Scholar
  35. 35.
    I.M. Saez, J.W. Goodby, Chiral nematic octasilsesquioxanes. J. Mater. Chem. 11, 2845–2851 (2001)Google Scholar
  36. 36.
    P.K. Vemula, V.A. Mallia, K. Bizati, G. John, Cholesterol phenoxy hexanoate mesogens: effect of meta substituents on their liquid crystalline behavior and in situ metal nanoparticle synthesis. Chem. Mater. 19, 5203–5206 (2007)Google Scholar
  37. 37.
    C.J. Murphy, T.K. San, A.M. Gole, C.J. Orendorff, J.X. Gao, L. Gou, S.E. Hunyadi, T. Li, Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J. Phys. Chem. B 109, 13857–13870 (2005)Google Scholar
  38. 38.
    L. Wang, X. Chen, Z. Sun, Y. Chai, Synthesis of gold nanoplates in lecithin lamellar liquid crystals. Can. J. Chem. Eng. 85, 598–601 (2007)Google Scholar
  39. 39.
    L.Y. Wang, X. Chen, J. Zhan, Y.C. Chai, C.J. Yang, L.M. Xu, W.C. Zhuang, B. Jing, Synthesis of gold nano- and microplates in hexagonal liquid crystals. J. Phys. Chem. B 109, 3189–3194 (2005)Google Scholar
  40. 40.
    H.M. Yang, M. Yang, Y. Zhang, G.X. Chen, In situ synthesis and lubrication of PbS nanoparticles in lamellar liquid crystal. Colloid J. 66, 635–641 (2004)Google Scholar
  41. 41.
    S. Saliba, P. Davidson, M. Imperor-Clerc, C. Mingotaud, M.L. Kahn, J.-D. Marty, Facile direct synthesis of ZnO nanoparticles within lyotropic liquid crystals: towards organized hybrid materials. J. Mater. Chem. 21, 18191–18194 (2011)Google Scholar
  42. 42.
    G. Surendran, F. Ksar, L. Ramos, B. Keita, L. Nadjo, E. Prouzet, P. Beaunier, P. Dieudonne, F. Audonnet, H. Remita, Palladium nanoballs synthesized in hexagonal mesophases. J. Phys. Chem. C 112, 10740–10744 (2008)Google Scholar
  43. 43.
    R. Guo, B. Zhang, Y. Sun, X. Liu, Lyotropic liquid crystals and applications in synthesis of nanostructured materials. Prog. Chem. 19, 1695–1702 (2007)Google Scholar
  44. 44.
    T.M. Dellinger, P.V. Braun, Lyotropic liquid crystals as nanoreactors for nanoparticle synthesis. Chem. Mater. 16, 2201–2207 (2004)Google Scholar
  45. 45.
    M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, R. Whyman, Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid–liquid system. J. Chem. Soc. Chem. Commun. 7, 801–802 (1994)Google Scholar
  46. 46.
    M. Draper, I.M. Saez, S.J. Cowling, P. Gai, B. Heinrich, B. Donnio, D. Guillon, J.W. Goodby, Self-assembly and shape morphology of liquid-crystalline gold metamaterials. Adv. Funct. Mater. 21, 1260–1278 (2011)Google Scholar
  47. 47.
    M.G. Clark, E.P. Raynes, R.A. Smith, R.J.A. Tough, Measurement of the permittivity of nematic liquid-crystals in magnetic and electric-fields using extrapolation procedures. J. Phys. D Appl. Phys. 13, 2151–2164 (1980)ADSGoogle Scholar
  48. 48.
    S.T. Wu, D. Coates, E. Bartmann, Physical-properties of chlorinated liquid-crystals. Liq. Cryst. 10, 635–646 (1991)Google Scholar
  49. 49.
    S. Murakami, H. Naito, Electrode and interface polarizations in nematic liquid crystal cells. Jpn. J. Appl. Phys. 36, 2222–2225 (1997)ADSGoogle Scholar
  50. 50.
    M. Wojcik, W. Lewandowski, J. Matraszek, J. Mieczkowski, J. Borysiuk, D. Pociecha, E. Gorecka, Liquid-crystalline phases made of gold nanoparticles. Angew. Chem. Int. Ed. 48, 5167–5169 (2009)Google Scholar
  51. 51.
    N. Kanayama, O. Tsutsumi, A. Kanazawa, T. Ikeda, Distinct thermodynamic behaviour of a mesomorphic gold nanoparticle covered with a liquid-crystalline compound. Chem. Commun. 2640–2641 (2001)Google Scholar
  52. 52.
    M. Wojcik, M. Kolpaczynska, D. Pociecha, J. Mieczkowski, E. Gorecka, Multidimensional structures made by gold nanoparticles with shape-adaptive grafting layers. Soft Matter 6, 5397–5400 (2010)ADSGoogle Scholar
  53. 53.
    I. In, Y.W. Jun, Y.J. Kim, S.Y. Kim, Spontaneous one dimensional arrangement of spherical Au nanoparticles with liquid crystal ligands. Chem. Commun. 800–801 (2005)Google Scholar
  54. 54.
    J. Zhang, J.K. Whitesell, M.A. Fox, Photoreactivity of self-assembled monolayers of azobenzene or stilbene derivatives capped on colloidal gold clusters. Chem. Mater. 13, 2323–2331 (2001)Google Scholar
  55. 55.
    L. Cseh, G.H. Mehl, The design and investigation of room temperature thermotropic nematic gold nanoparticles. J. Am. Chem. Soc. 128, 13376–13377 (2006)Google Scholar
  56. 56.
    L. Cseh, G.H. Mehl, Structure-property relationships in nematic gold nanoparticles. J. Mater. Chem. 17, 311–315 (2007)Google Scholar
  57. 57.
    J.W. Goodby, I.M. Saez, S.J. Cowling, J.S. Gasowska, R.A. MacDonald, S. Sia, P. Watson, K.J. Toyne, M. Hird, R.A. Lewis, S.-E. Lee, V. Vaschenko, Molecular complexity and the control of self-organising processes. Liq. Cryst. 36, 567–605 (2009)Google Scholar
  58. 58.
    D.V. Talapin, J.-S. Lee, M.V. Kovalenko, E.V. Shevchenko, Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389–458 (2010)Google Scholar
  59. 59.
    X. Zeng, F. Liu, A.G. Fowler, G. Ungar, L. Cseh, G.H. Mehl, J.E. MacDonald, 3D ordered gold strings by coating nanoparticles with mesogens. Adv. Mater. 21, 1746–1750 (2009)Google Scholar
  60. 60.
    H. Qi, B. Kinkead, V.M. Marx, H.R. Zhang, T. Hegmann, Miscibility and alignment effects of mixed monolayer cyanobiphenyl liquid-crystal-capped gold nanoparticles in nematic cyanobiphenyl liquid crystal hosts. Chem. Phys. Chem. 10, 1211–1218 (2009)Google Scholar
  61. 61.
    H. Qi, B. Kinkead, T. Hegmann, Unprecedented dual alignment mode and Freedericksz transition in planar nematic liquid crystal cells doped with gold nanoclusters. Adv. Funct. Mater. 18, 212–221 (2008)Google Scholar
  62. 62.
    T.G. Schaaff, G. Knight, M.N. Shafigullin, R.F. Borkman, R.L. Whetten, Isolation and selected properties of a 10.4 kDa Gold: Glutathione cluster compound. J. Phys. Chem. B 102, 10643–10646 (1998)Google Scholar
  63. 63.
    H. Qi, J. O’Neil, T. Hegmann, Chirality transfer in nematic liquid crystals doped with (S)-naproxen-functionalized gold nanoclusters: an induced circular dichroism study. J. Mater. Chem. 18, 374–380 (2008)Google Scholar
  64. 64.
    V.A. Mallia, P.K. Vemula, G. John, A. Kumar, P.M. Ajayan, In situ synthesis and assembly of gold nanoparticles embedded in glass-forming liquid crystals. Angew. Chem. Int. Ed. 46, 3269–3274 (2007)Google Scholar
  65. 65.
    Y. Wang, H. Yoon, H.K. Bisoyi, S. Kumar, Q. Li, Hybrid rod-like and bent-core liquid crystal dimers exhibiting biaxial smectic-A and nematic phases. J. Mater. Chem. 22, 20363–20367 (2012)Google Scholar
  66. 66.
    J. Etxebarria, M.B. Ros, Bent-core liquid crystals in the route to functional materials. J. Mater. Chem. 18, 2919–2926 (2008)Google Scholar
  67. 67.
    J.C.P. Gabriel, P. Davidson, Mineral liquid crystals from self-assembly of anisotropic nanosystems. Colloid Chem. 1(226), 119–172 (2003)Google Scholar
  68. 68.
    E.B. Barmatov, D.A. Pebalk, M.V. Barmatova, Influence of silver nanoparticles on the phase behavior of side-chain liquid crystalline polymers. Langmuir 20, 10868–10871 (2004)Google Scholar
  69. 69.
    G.A. Shandryuk, E.V. Matukhina, R.B. Vasil’ev, A. Rebrov, G.N. Bondarenko, A.S. Merekalov, A.M. Gas’kov, R.V. Talroze, Effect of H-bonded liquid crystal polymers on CdSe quantum dot alignment within nanocomposite. Macromolecules 41, 2178–2185 (2008)ADSGoogle Scholar
  70. 70.
    D. Astruc, E. Boisselier, C. Ornelas, Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem. Rev. 110, 1857–1959 (2010)Google Scholar
  71. 71.
    G.R. Newkome, C.N. Moorefield, F. Vögtle, Dendrimers and Dendrons: Concepts, Synthesis and Applications (VCH, Weinheim, 2001)Google Scholar
  72. 72.
    S. Frein, J. Boudon, M. Vonlanthen, T. Scharf, J. Barbera, G. Suess-Fink, T. Buergi, R. Deschenaux, Liquid-crystalline thiol- and disulfide-based dendrimers for the functionalization of gold manoparticles. Helv. Chim. Acta 91, 2321–2337 (2008)Google Scholar
  73. 73.
    B. Donnio, P. Garcia-Vazquez, J.-L. Gallani, D. Guillon, E. Terazzi, Dendronized ferromagnetic gold nanoparticles self-organized in a thermotropic cubic phase. Adv. Mater. 19, 3534–3539 (2007)Google Scholar
  74. 74.
    L. Li, S. Kang, J. Harden, Q. Sun, X. Zhou, L. Dai, A. Jakli, S. Kumar, Q. Li, Nature inspired light-harvesting liquid crystalline porphyrins for organic photovoltaics. Liq. Cryst. 35, 233–239 (2008)Google Scholar
  75. 75.
    Q. Li, L. Li, Photoconducting Discotic Liquid Crystals, Chapter 11, in Thermotropic Liquid Crystals, ed. by A. Ramamoorthy (Springer, New York, 2007)Google Scholar
  76. 76.
    S. Kumar, S.K. Pal, P.S. Kumar, V. Lakshminarayanan, Novel conducting nanocomposites: synthesis of triphenylene-covered gold nanoparticles and their insertion into a columnar matrix. Soft Matter 3, 896–900 (2007)ADSGoogle Scholar
  77. 77.
    Z. Shen, M. Yamada, M. Miyake, Control of stripelike and hexagonal self-assembly of gold nanoparticles by the tuning of interactions between triphenylene ligands. J. Am. Chem. Soc. 129, 14271–14280 (2007)Google Scholar
  78. 78.
    C. Burda, X.B. Chen, R. Narayanan, M.A. El-Sayed, Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025–1102 (2005)Google Scholar
  79. 79.
    C.Z. Li, K.B. Male, S. Hrapovic, J.H.T. Luong, Fluorescence properties of gold nanorods and their application for DNA biosensing. Chem. Commun. 31, 3924–3926 (2005)Google Scholar
  80. 80.
    X.H. Huang, I.H. El-Sayed, W. Qian, M.A. El-Sayed, Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115–2120 (2006)Google Scholar
  81. 81.
    C.C. Chen, Y.P. Lin, C.W. Wang, H.C. Tzeng, C.H. Wu, Y.C. Chen, C.P. Chen, L.C. Chen, Y.C. Wu, DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation. J. Am. Chem. Soc. 128, 3709–3715 (2006)Google Scholar
  82. 82.
    S. Link, M.A. El-Sayed, Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103, 8410–8426 (1999)Google Scholar
  83. 83.
    C. Yu, J. Irudayaraj, Quantitative evaluation of sensitivity and selectivity of multiplex nanoSPR biosensor assays. Biophys. J. 93, 3684–3692 (2007)ADSGoogle Scholar
  84. 84.
    B. Nikoobakht, J.P. Wang, M.A. El-Sayed, Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: off-surface plasmon resonance condition. Chem. Phys. Lett. 366, 17–23 (2002)ADSGoogle Scholar
  85. 85.
    P.K. Jain, M.A. El-Sayed, Plasmonic coupling in noble metal nanostructures. Chem. Phys. Lett. 487, 153–164 (2010)ADSGoogle Scholar
  86. 86.
    A.M. Funston, C. Novo, T.J. Davis, P. Mulvaney, Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett. 9, 1651–1658 (2009)ADSGoogle Scholar
  87. 87.
    Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, I.I. Smalyukh, Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications. Nano Lett. 10, 1347–1353 (2010)ADSGoogle Scholar
  88. 88.
    P. Anger, P. Bharadwaj, L. Novotny, Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006)ADSGoogle Scholar
  89. 89.
    A.K. Boal, F. Ilhan, J.E. DeRouchey, T. Thurn-Albrecht, T.P. Russell, V.M. Rotello, Self-assembly of nanoparticles into structured spherical and network aggregates. Nature 404, 746–748 (2000)ADSGoogle Scholar
  90. 90.
    J. Khoury, X. Zhou, L. Qu, L. Dai, A. Urbas, Q. Li, Organo-soluble photoresponsive azo hybrid gold nanorods. Chem. Comm. 2109–2111 (2009)Google Scholar
  91. 91.
    C. Xue, O. Birel, Y. Xue, L. Dai, A. Urbas, Q. Li, pH and temperature modulated aggregation of hydrophilic gold nanorods with perylene dyes and carbon nanotubes. J. Phys. Chem. C 117, 6752–6758 (2013)Google Scholar
  92. 92.
    Y. Li, D. Yu, L. Dai, A. Urbas, Q. Li, Hydrophobic chiral hybrid gold nanorods. Langmuir 27, 98–103 (2011)Google Scholar
  93. 93.
    B.S. Avinash, V. Lakshminarayanan, S. Kumar, J.K. Viji, Gold nanorods embedded discotic nanoribbons. Chem. Comm. 49, 978–980 (2013)Google Scholar
  94. 94.
    Z.Y. Tang, Z.L. Zhang, Y. Wang, S.C. Glotzer, N.A. Kotov, Self-assembly of CdTe nanocrystals into free-floating sheets. Science 314, 274–278 (2006)ADSGoogle Scholar
  95. 95.
    S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, A.A.G. Requicha, Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. 2, 229–232 (2003)ADSGoogle Scholar
  96. 96.
    F. Caruso, Hollow inorganic capsules via colloid-templated layer-by-layer electrostatic assembly. Top. Curr. Chem. 227, 145–168 (2003)Google Scholar
  97. 97.
    C.M. Xue, O. Birel, M. Gao, S. Zhang, L.M. Dai, A. Urbas, Q. Li, Perylene monolayer protected gold nanorods: Unique optical, electronic properties and self-assemblies. J. Phys. Chem. C 116, 10396–10404 (2012)Google Scholar
  98. 98.
    C.M. Xue, O. Birel, Y.N.A. Li, X. Ma, M. Gao, A. Urbas, Q. Li, Porphyrin metal complex monolayer-protected gold nanorods: a parallel facile synthesis and self-assembly. J. Colloid Interface Sci. 398, 1–6 (2013)Google Scholar
  99. 99.
    C.M. Xue, Y.Q. Xu, Y. Pang, D.S. Yu, L.M. Dai, M. Gao, A. Urbas, Q. Li, Organo-soluble porphyrin mixed monolayer-protected gold nanorods with intercalated fullerenes. Langmuir 28, 5956–5963 (2012)Google Scholar
  100. 100.
    M.J. Hostetler, J.E. Wingate, C.J. Zhong, J.E. Harris, R.W. Vachet, M.R. Clark, J.D. Londono, S.J. Green, J.J. Stokes, G.D. Wignall, G.L. Glish, M.D. Porter, N.D. Evans, R.W. Murray, Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir 14, 17–30 (1998)Google Scholar
  101. 101.
    L. Donkers, D. Lee, R.W. Murray, Synthesis and isolation of the molecule-like cluster Au-38(PhCH2CH2S)(24). Langmuir 20, 1945–1952 (2004)Google Scholar
  102. 102.
    T.G. Schaaff, M.N. Shafigullin, J.T. Khoury, I. Vezmar, R.L. Whetten, Properties of a ubiquitous 29 kDa Au: SR cluster compound. J. Phys. Chem. B 105, 8785–8796 (2001)Google Scholar
  103. 103.
    O. Kohlmann, W.E. Steinmetz, X.A. Mao, W.P. Wuelfing, A.C. Templeton, R.W. Murray, C.S. Johnson, NMR diffusion, relaxation, and spectroscopic studies of water soluble, monolayer-protected gold nanoclusters. J. Phys. Chem. B 105, 8801–8809 (2001)Google Scholar
  104. 104.
    R.H. Terrill, T.A. Postlethwaite, C.H. Chen, C.D. Poon, A. Terzis, A.D. Chen, J.E. Hutchison, M.R. Clark, G. Wignall, J.D. Londono, R. Superfine, M. Falvo, C.S. Johnson, E.T. Samulski, R.W. Murray, Monolayers in three dimensions: NMR, SAXS, thermal, and electron hopping studies of alkanethiol stabilized gold clusters. J. Am. Chem. Soc. 117, 12537–12548 (1995)Google Scholar
  105. 105.
    M.J.A. Hore, R.J. Composto, Nanorod self-assembly for tuning optical absorption. ACS Nano 4, 6941–6949 (2010)Google Scholar
  106. 106.
    J. Perez-Juste, B. Rodriguez-Gonzalez, P. Mulvaney, L.M. Liz-Marzan, Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films. Adv. Funct. Mater. 15, 1065–1071 (2005)Google Scholar
  107. 107.
    C. Xue, K. Gutierrez-Cuevas, M. Gao, A. Urbas, Q. Li, Photo-modulated self-assembly of hydrophobic thiol monolayer-protected gold nanorods and their alignment in thermotropic liquid crystal. J. Phys. Chem. C 117, 21603–21608 (2013)Google Scholar
  108. 108.
    J. Muller, C. Sonnichsen, H. von Poschinger, G. von Plessen, T.A. Klar, J. Feldmann, Electrically controlled light scattering with single metal nanoparticles. Appl. Phys. Lett. 81, 171–173 (2002)ADSGoogle Scholar
  109. 109.
    N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, Three-dimensional photonic metamaterials at optical frequencies. Nature Mater. 7, 31–37 (2008)ADSGoogle Scholar
  110. 110.
    J.B. Pendry, Negative refraction. Contemporary Physics 45, 191–202 (2004)ADSGoogle Scholar
  111. 111.
    G. Schmid (ed.), Nanoparticles. From Theory to Application (Wiley-VCH, Weinheim, 2004)Google Scholar
  112. 112.
    S. Polarz, Shape matters: anisotropy of the morphology of inorganic colloidal particles —synthesis and function. Adv. Funct. Mater. 21, 3214–3230 (2011)Google Scholar
  113. 113.
    M. Skarabot, M. Ravnik, S. Zumer, U. Tkalec, I. Poberaj, D. Babic, I. Musevic. Hierarchical self-assembly of nematic colloidal superstructures. Phys. Rev. E 77 (2008)Google Scholar
  114. 114.
    C.M. Soukoulis, M. Wegener, Optical metamaterials-more bulky and less lossy. Science 330, 1633–1634 (2010)ADSGoogle Scholar
  115. 115.
    F. Brochard, P.G.D. Gennes, Theory of magnetic suspensions in liquid crystals. J. De Physique 31, 691–708 (1970)Google Scholar
  116. 116.
    H. Qi, B. Kinkead, T. Hegmann, Effects of functionalized metal and semiconductor nanoparticles in nematic liquid crystal phases, in Emerging Liquid Crystal Technologies III, vol 6911, ed. by L.C. Chien (ed.) (2008), pp. 91106–91106Google Scholar
  117. 117.
    L.S. Li, A.P. Alivisatos, Semiconductor nanorod liquid crystals and their assembly on a substrate. Adv. Mater. 15, 408–411 (2003)Google Scholar
  118. 118.
    L.C.T. Shoute, D.F. Kelley, Spatial organization of GaSe quantum dots: Organic/semiconductor liquid crystals. J. Phys. Chem. C 111, 10233–10239 (2007)Google Scholar
  119. 119.
    M. Zorn, S. Meuer, M.N. Tahir, Y. Khalavka, C. Soennichsen, W. Tremel, R. Zentel, Liquid crystalline phases from polymer functionalised semiconducting nanorods. J. Mater. Chem. 18, 3050–3058 (2008)Google Scholar
  120. 120.
    C. Nobile, L. Carbone, A. Fiore, R. Cingolani, L. Manna, R. Krahne, Self-assembly of highly fluorescent semiconductor nanorods into large scale smectic liquid crystal structures by coffee stain evaporation dynamics. J. Phys.: Condens. Matter 21, 264013 (2009)ADSGoogle Scholar
  121. 121.
    J.C. Payne, E.L. Thomas, Towards an understanding of nanoparticle-chiral nematic liquid crystal co-assembly. Adv. Funct. Mater. 17, 2717–2721 (2007)Google Scholar
  122. 122.
    J.J. Vallooran, S. Bolisetty, R. Mezzenga, Macroscopic alignment of lyotropic liquid crystals using magnetic nanoparticles. Adv. Mater. 23, 3932–3937 (2011)Google Scholar
  123. 123.
    T.J. Daou, J.M. Greneche, G. Pourroy, S. Buathong, A. Derory, C. Ulhaq-Bouillet, B. Donnio, D. Guillon, S. Begin-Colin, Coupling agent effect on magnetic properties of functionalized magnetite-based nanoparticles. Chem. Mater. 20, 5869–5875 (2008)Google Scholar
  124. 124.
    A. Demortiere, S. Buathong, B.P. Pichon, P. Panissod, D. Guillon, S. Begin-Colin, B. Donnio, Nematic-like organization of magnetic mesogen-hybridized panoparticles. Small 6, 1341–1346 (2010)Google Scholar
  125. 125.
    L.M. Lopatina, J.V. Selinger, Theory of ferroelectric nanoparticles in nematic liquid crystals. Phys. Rev. Lett. 102, 197802 (2009)ADSGoogle Scholar
  126. 126.
    Y. Reznikov, O. Buchnev, O. Tereshchenko, V. Reshetnyak, A. Glushchenko, J. West, Ferroelectric nematic suspension. Appl. Phys. Lett. 82, 1917–1919 (2003)ADSGoogle Scholar
  127. 127.
    S.-C. Jeng, C.-W. Kuo, H.-L. Wang, C–.C. Liao, Nanoparticles-induced vertical alignment in liquid crystal cell. Appl. Phys. Lett. 91, 061112 (2007)ADSGoogle Scholar
  128. 128.
    C.-W. Kuo, S.-C. Jeng, H.-L. Wang, C–.C. Liao, Application of nanoparticle-induced vertical alignment in hybrid-aligned nematic liquid crystal cell. Appl. Phys. Lett. 91, 141103 (2007)ADSGoogle Scholar
  129. 129.
    G.L. Nealon, R. Greget, C. Dominguez, Z.T. Nagy, D. Guillon, J.L. Gallani, B. Donnio, Liquid-crystalline nanoparticles: Hybrid design and mesophase structures. Beilstein J. Org. Chem. 8, 349–370 (2012)Google Scholar
  130. 130.
    S. Bedanta, W. Kleemann, Supermagnetism. J. Phys. D Appl. Phys. 42, 13001 (2009)ADSGoogle Scholar
  131. 131.
    M.P. Pileni, Nanocrystal self-assemblies: Fabrication and collective properties. J. Phys. Chem. B 105, 3358–3371 (2001)Google Scholar
  132. 132.
    J. Shi, S. Gider, K. Babcock, D.D. Awschalom, Magnetic clusters in molecular beams, metals, and semiconductors. Science 271, 937–941 (1996)ADSGoogle Scholar
  133. 133.
    S.H. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989–1992 (2000)ADSGoogle Scholar
  134. 134.
    D. Greshnykh, A. Froemsdorf, H. Weller, C. Klinke, On the electric conductivity of highly ordered monolayers of monodisperse metal nanoparticles. Nano Lett. 9, 473–478 (2009)ADSGoogle Scholar
  135. 135.
    A. Zabet-Khosousi, A.-A. Dhirani, Charge transport in nanoparticle assemblies. Chem. Rev. 108, 4072–4124 (2008)Google Scholar
  136. 136.
    S.A. Maier, M.L. Brongersma, P.G. Kik, S. Meltzer, A.A.G. Requicha, H.A. Atwater, Plasmonics—a route to nanoscale optical devices. Adv. Mater. 13, 1501–1505 (2001)Google Scholar
  137. 137.
    E.V. Shevchenko, D.V. Talapin, S. O’Brien, C.B. Murray, Polymorphism in AB(13) nanoparticle superlattices: an example of semiconductor-metal metamaterials. J. Am. Chem. Soc. 127, 8741–8747 (2005)Google Scholar

Copyright information

© © The Author(s) 2014

Authors and Affiliations

  1. 1.Liquid Crystal InstituteKent State UniversityKentUSA

Personalised recommendations