Advertisement

Self-Assembled Liquid Crystalline Conjugated Polymers: Synthesis, Development, and Their Advanced Electro-Optical Properties

  • Benedict A. San Jose
  • Kazuo Akagi
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

In this chapter, recent developments in self-assembled liquid crystalline conjugated polymers leading to advanced functionalities are discussed. Liquid crystallinity in conjugated polymers enables the self-assembly of a hierarchical structure or facilitates the formation of higher-ordered structures through liquid crystalline phases. Combining liquid crystallinity with the inherent photoluminescence and electrical conductivity of these polymers, which arise from their conjugated main chain structure, advanced functionalities such as linearly and circularly polarized luminescence, ferroelectricity, and dynamic switching are achieved. Such developments may pave the way for the creation of next-generation materials for applications in organic optoelectronics.

Keywords

Liquid Crystallinity Polarize Optical Microscopy Cast Film Chiral Dopant Lyotropic Liquid Crystallinity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors are grateful to Dr. Kiyoshi Suda, Dr. Hiroyuki Hayasaka, and Mr. Kazuyoshi Watanabe (Department of Polymer Chemistry, Kyoto University) for their valuable contributions in the development and synthesis of the liquid crystalline conjugated polymers discussed in this chapter. This work was supported by Grants-in-Aid for Science Research (S) (No. 20225007), (A) (No. 25246002), and (No. 25620098) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

  1. 1.
    D.T. McQuade, A.E. Pullen, T.M. Swager, Conjugated polymer-based chemical sensors. Chem. Rev. 100, 2537–2574 (2000)CrossRefGoogle Scholar
  2. 2.
    J. Liu, J.W.Y. Lam, B.Z. Tang, Acetylenic polymers: syntheses, structures, and functions. Chem. Rev. 109, 5799–5867 (2009)CrossRefGoogle Scholar
  3. 3.
    T. Masuda, Substituted polyacetylenes. J. Polym. Sci. Part A Polym. Chem. 45, 165–180 (2007)CrossRefADSGoogle Scholar
  4. 4.
    C.V. Hoven, A. Garcia, G.C. Bazan, T.Q. Nguyen, Recent applications of conjugated polyelectrolytes in optoelectronic devices. Adv. Mater. 20, 3793–3810 (2008)CrossRefGoogle Scholar
  5. 5.
    J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burns, A.B. Holmes, Light-emitting diodes based on conjugated polymers. Nature 347, 539–541 (1990)CrossRefADSGoogle Scholar
  6. 6.
    R.H. Friend, R.W. Gymer, A.B. Holmes, J.H. Burroughes, R.N. Marks, C. Taliani, D.D.C. Bradley, D.A. Dos Santos, J.L. Bredas, M. Logdlund, W.R. Salaneck, Electroluminescence in conjugated polymers. Nature 397, 121–128 (1999)CrossRefADSGoogle Scholar
  7. 7.
    S. Guenes, H. Neugebauer, N.S. Sariciftci, Conjugated polymer-based organic solar cells. Chem. Rev. 107, 1324–1338 (2007)CrossRefGoogle Scholar
  8. 8.
    S.W. Thomas III, G.D. Joly, T.M. Swager, Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev. 107, 1339–1386 (2007)CrossRefGoogle Scholar
  9. 9.
    F.J.M. Hoeben, P. Jonkheijm, E.W. Meijer, A.P.H.J. Schenning, About Supramolecular assemblies of π-conjugated systems. Chem. Rev. 105, 1491–1546 (2005)CrossRefGoogle Scholar
  10. 10.
    K. Suda, K. Akagi, Self-assembled Helical conjugated poly(meta-phenylene) derivatives that afford whiskers with Discotic Hexagonal columnar packed structure. Macromolecules 44, 9473–9488 (2011)CrossRefADSGoogle Scholar
  11. 11.
    M. Grell, W. Knoll, D. Lupo, A. Meisel, T. Miteva, D. Neher, H.G. Nothofer, U. Scherf, A. Yasuda, Blue polarized electroluminescence from a liquid crystalline polyfluorene. Adv. Mater. 11, 671–675 (1999)CrossRefGoogle Scholar
  12. 12.
    H. Sirringhaus, R.J. Wilson, R.H. Friend, M. Inbasekaran, W. Wu, E.P. Woo, M. Grell, D.D.C. Bradley, Mobility enhancement in conjugated polymer field-effect transistors through chain alignment in a liquid-crystalline phase. Appl. Phys. Lett. 77, 406–408 (2000)CrossRefADSGoogle Scholar
  13. 13.
    K. Suda, J. Yoshida, S. Nimori, K. Akagi, Hierarchical structures of self-assembled helical conjugated polymers - magnetically forced alignment of liquid crystalline poly(meta-phenylene) derivatives. Synth. Met. 159, 943–948 (2009)CrossRefGoogle Scholar
  14. 14.
    K. Suda, K. Akagi, Electro-optical behavior of ferroelectric liquid crystalline polyphenylene derivatives. J. Polym. Sci. Part A Polym. Chem. 46, 3591–3610 (2008)CrossRefADSGoogle Scholar
  15. 15.
    H. Hayasaka, K. Tamura, K. Akagi, Dynamic switching of linearly polarized emission in liquid crystallinity-embedded photoresponsive conjugated polymers. Macromolecules 41, 2341–2346 (2008)CrossRefADSGoogle Scholar
  16. 16.
    K. Akagi, Synthesis and properties of liquid-crystalline-conjugated polymers. Bull. Chem. Soc. Jpn. 80, 649–661 (2007)CrossRefGoogle Scholar
  17. 17.
    J. Oguma, R. Kawamoto, H. Goto, K. Itoh, K. Akagi, Magnetically forced alignment of liquid crystalline aromatic conjugated polymers and their electrical and optical anisotropies. Synth. Met. 119, 537–538 (2001)CrossRefGoogle Scholar
  18. 18.
    B.A. San Jose, S. Matsushita, Y. Moroishi, K. Akagi, Disubstituted liquid crystalline polyacetylene derivatives that exhibit linearly polarized blue and green emissions. Macromolecules 44, 6288–6302 (2011)Google Scholar
  19. 19.
    G. Kwak, M. Minakuchi, T. Sakaguchi, T. Masuda, M. Fujiki, Poly(diphenylacetylene) bearing long alkyl side chain via silylene linkage: its lyotropic liquid crystallinity and optical anisotropy. Chem. Mater. 19, 3654–3661 (2007)CrossRefGoogle Scholar
  20. 20.
    B.A. San Jose, K. Akagi, Liquid crystalline polyacetylene derivatives with advanced electrical and optical properties. Polym. Chem. 4, 5144–5161 (2013)CrossRefGoogle Scholar
  21. 21.
    B.A. San Jose, S. Matsushita, K. Akagi, Lyotropic chiral nematic liquid crystalline aliphatic conjugated polymers based on di-substituted polyacetylene derivatives that exhibit high dissymmetry factors in circularly polarized luminescence. J. Am. Chem. Soc. 134, 19795–19807 (2012)CrossRefGoogle Scholar
  22. 22.
    K. Watanabe, I. Osaka, S. Yorozuya, K. Akagi, Helically π-stacked thiophene-based copolymers with circularly polarized fluorescence: high dissymmetry factors enhanced by self-ordering in chiral nematic liquid crystal phase. Chem. Mater. 24, 1011–1024 (2012)CrossRefGoogle Scholar
  23. 23.
    H. Hayasaka, T. Miyashita, K. Tamura, K. Akagi, Helically π-stacked conjugated polymers bearing photoresponsive and chiral moieties in side chains: reversible photoisomerization-enforced switching between emission and quenching of circularly polarized fluorescence. Adv. Funct. Mater. 20, 1243–1250 (2010)CrossRefGoogle Scholar
  24. 24.
    K. Watanabe, H. Iida, K. Akagi, Circularly polarized blue luminescent spherulites consisting of hierarchically assembled ionic conjugated polymers with a helically π-stacked structure. Adv. Mater. 24, 6451–6456 (2012)CrossRefGoogle Scholar
  25. 25.
    E. Yashima, K. Maeda, H. Iida, Y. Furusho, K. Nagai, Helical polymers: synthesis, structures, and functions. Chem. Rev. 109, 6102–6211 (2009)CrossRefGoogle Scholar
  26. 26.
    E. Yashima, K. Maeda, T. Nishimura, Detection and amplification of chirality by helical polymers. Chem. Eur. J. 10, 42–51 (2004)CrossRefGoogle Scholar
  27. 27.
    C. Li, M. Numata, A.H. Bae, K. Sakurai, S. Shinkai, Self-assembly of supramolecular chiral insulated molecular wire. J. Am. Chem. Soc. 127, 4548–4549 (2005)CrossRefGoogle Scholar
  28. 28.
    K. Akagi, H. Shirakawa, Morphological alignment of liquid crystalline. Conducting polyacetylene derivatives. Macromol. Symp. 104, 137–158 (1996)CrossRefGoogle Scholar
  29. 29.
    K. Akagi, H. Shirakawa, Polymeric Materials Encyclopedia: Synthesis, Properties and Applications (CRC Press, Boca Raton, 1996)Google Scholar
  30. 30.
    K. Akagi, H. Shirakawa, in Electrical and Optical Polymer Systems: Fundamentals, Methods, and Applications, ed. by D.L. Wise, G.E. Wnek, D.J. Trantolo, T.M. Cooper, J.D. Gresser (Marcel Dekker, New York, 1998)Google Scholar
  31. 31.
    Y. Yamashita, Y. Kato, S. Endo, K. Kimura, Preparation and formation mechanism of Poly(oxycarbonyl-1,4-phenylene) whiskers from 4-Acetoxybenzoic acid. Makromol. Chem. Rapid Commun. 9, 687–691 (1988)CrossRefGoogle Scholar
  32. 32.
    K. Kimura, Y. Kato, T. Inabe, Y. Yamashita, Formation mechanism of Poly(4’-oxy-4-biphenylcarbonyl) crystals obtained by solution polymerization. Macromolecules 28, 255–259 (1995)CrossRefADSGoogle Scholar
  33. 33.
    K.J. Ihn, J. Moulton, P. Smith, Whiskers of Poly(3-alkylthiophene)s. J. Polym. Sci. Part B Polym. Phys. 31, 735–742 (1993)CrossRefADSGoogle Scholar
  34. 34.
    D.S. Suh, T.J. Kim, A.N. Aleshin, Y.W. Park, G. Piao, K. Akagi, H. Shirakawa, J.S. Qualls, S.Y. Han, J.S.J. Brooks, Helical polyacetylene heavily doped with iodine: magnetotransport. Chem. Phys. 114, 7222–7227 (2001)CrossRefADSGoogle Scholar
  35. 35.
    K. Akagi, G. Piao, S. Kaneko, K. Sakamaki, H. Shirakawa, M. Kyotani, Helical polyacetylene synthesized with a chiral nematic reaction field. Science 282, 1683–1686 (1998)CrossRefADSGoogle Scholar
  36. 36.
    K. Akagi, Helical polyacetylene: asymmetric polymerization in a chiral liquid-crystal field. Chem. Rev. 109, 5354–5401 (2009)CrossRefGoogle Scholar
  37. 37.
    B.S. Li, K.K.L. Cheuk, F. Salhi, J.W.Y. Lam, J.A.K. Cha, X. Xiao, C. Bai, B.Z. Tang, Tuning the chain helicity and organizational morphology of an l-valine-containing polyacetylene by pH change. Nano Lett. 6, 323–328 (2001)CrossRefADSGoogle Scholar
  38. 38.
    M.M. Bouman, E.W. Meijer, Stereomutation in optically active regioregular polythiophenes. Adv. Mater. 7, 385–387 (1995)CrossRefGoogle Scholar
  39. 39.
    A. Khan, S. Muller, S. Hecht, Practical synthesis of an amphiphilic, non-ionic poly(para-phenyleneethynylene) derivative with a remarkable quantum yield in water. Chem. Commun. 584–586 (2005)Google Scholar
  40. 40.
    W. Vanormelingen, L. Pandey, M. Van der Auweraer, T. Verbiest, G. Koeckelberghs, Steering the conformation and chiroptical properties of poly(dithienopyrrole)s substituted with chiral OPV side chains. Macromolecules 43, 2157–2168 (2010)CrossRefADSGoogle Scholar
  41. 41.
    M.M. Green, N.C. Peterson, T. Sato, A. Teramoto, R. Cook, S. Lifson, A Helical polymer with a cooperative response to chiral information. Science 268, 1860–1866 (1995)CrossRefADSGoogle Scholar
  42. 42.
    J.C. Nelson, J.G. Saven, J.S. Moore, P.G. Wolynes, Solvophobically driven folding of nonbiological oligomers. Science 277, 1793–1796 (1997)CrossRefGoogle Scholar
  43. 43.
    D.J. Williams, H.M. Colquhoun, C.A.O. Mahoney, The structure of poly(m-phenylene): a prediction from single-crystal X-ray studies of m-Deciphenyl and m-Undeciphenyl. Chem. Commun. 1643–1644 (1994)Google Scholar
  44. 44.
    N. Kobayashi, S. Sasaki, M. Abe, S. Watanabe, H. Fukumoto, T. Yamamoto, Chain distortion of m-Linked aromatic polymers: poly(m-phenylene) and poly(m-pyridine). Macromolecules 37, 7986–7991 (2004)CrossRefADSGoogle Scholar
  45. 45.
    M. Grell, D.D.C. Bradley, Polarized luminescence from oriented molecular materials. Adv. Mater. 11, 895–905 (1999)CrossRefGoogle Scholar
  46. 46.
    M. Schadt, Liquid crystal materials and liquid crystal displays. Annu. Rev. Mater. Sci. 27, 305–379 (1997)CrossRefADSGoogle Scholar
  47. 47.
    E. Peeters, M.P.T. Christiaans, R.A.J. Janssen, H.F.M. Schoo, H.P.J.M. Dekkers, E.W. Meijer, Circularly polarized electroluminescence from a polymer light-emitting diode. J. Am. Chem. Soc. 119, 9909–9910 (1997)CrossRefGoogle Scholar
  48. 48.
    B.M.W. Langeveld-Voss, R.A.J. Janssen, M.P.T. Christiaans, S.C.J. Meskers, H.P.J. Dekkers, E.W. Meijer, Circular dichroism and circular polarization of photoluminescence of highly ordered Poly{3,4-di[(S)-2-methylbutoxy]thiophene}. J. Am. Chem. Soc. 118, 4908–4909 (1996)CrossRefGoogle Scholar
  49. 49.
    M. Oda, H.G. Nothofer, G.L.U. Scherf, S.C.J. Meskers, D. Neher, Circularly polarized electroluminescence from liquid-crystalline chiral polyfluorenes. Adv. Mater. 12, 362–365 (2000)CrossRefGoogle Scholar
  50. 50.
    S.H. Chen, B.M. Conger, J.C. Mastrangelo, A.S. Kende, D.U. Kim, Synthesis and optical properties of thermotropic polythiophene and poly(p-phenylene) derivatives. Macromolecules 31, 8051–8057 (1998)CrossRefADSGoogle Scholar
  51. 51.
    J.N. Wilson, W. Steffen, T.G. McKenzie, G. Lieser, M. Oda, D. Neher, U.H.F. Bunz, Chiroptical properties of poly(p-phenyleneethynylene) copolymers in thin films: large g-Values. J. Am. Chem. Soc. 124, 6830–6831 (2002)CrossRefGoogle Scholar
  52. 52.
    I. Dierking (ed.), Textures of Liquid Crystals (Wiley, Weinheim, 2003)Google Scholar
  53. 53.
    S. Kawata, Y. Kawata, Three-dimensional optical data storage using photochromic materials. Chem. Rev. 100, 1777–1788 (2000)CrossRefGoogle Scholar
  54. 54.
    D.M. Ivory, G.G. Miller, J.M. Sowa, L.W. Shacklette, R.R. Chance, R.H. Baughman, Highly conducting charge-transfer complexes of poly(p-phenylene). J. Chem. Phys. 71, 1506–1507 (1979)CrossRefADSGoogle Scholar
  55. 55.
    M. Mitsuishi, S. Ito, M. Yamamoto, H. Endo, S. Hachiya, T. Fischer, W. Knoll, Optical characterization of a ferroelectric liquid crystalline polymer studied by time-resolved optical waveguide spectroscopy. Macromolecules 31, 1565–1574 (1998)CrossRefADSGoogle Scholar
  56. 56.
    N. Leister, D. Geschke, Pyroelectric investigations of polarization and charge distributions in sandwich cells containing a ferroelectric liquid crystalline polymer. Liq. Cryst. 24, 441–449 (1998)CrossRefGoogle Scholar
  57. 57.
    A. Fukuda, Y. Takanishi, T. Isozaki, K. Ishikawa, H. Takezoe, Antiferroelectric chiral smectic liquid crystals. J. Mater. Chem. 4, 997–1016 (1994)CrossRefGoogle Scholar
  58. 58.
    V. Reiffenrath, J. Krause, H.J. Plach, G. Weber, New liquid-crystalline compounds with negative dielectric anisotropy. Liq. Cryst. 5, 159–170 (1989)CrossRefGoogle Scholar
  59. 59.
    P. Balkwill, D. Bishop, A. Pearson, I. Sage, Fluorination in nematic systems. Mol. Cryst. Liq. Cryst. 123, 1–13 (1985)CrossRefGoogle Scholar
  60. 60.
    M.A. Osman, Molecular structure and mesomorphic properties of thermotropic liquid crystals. III. Lateral substituents. Mol. Cryst. Liq. Cryst. 128, 45–63 (1985)CrossRefGoogle Scholar
  61. 61.
    C.J. Booth, J.W. Goodby, J.P. Hardy, O.C. Lettington, K.J. Toyne, Fluorosubstituted chiral liquid crystals derived from (R)-2-(4-Hydroxyphenoxy)propan-1-ol. J. Mater. Chem. 3, 935–941 (1993)CrossRefGoogle Scholar
  62. 62.
    H. Goto, X. Dai, H. Narihiro, K. Akagi, Synthesis of polythiophene derivatives bearing ferroelectric liquid crystalline substituents. Macromolecules 37, 2353–2362 (2004)CrossRefADSGoogle Scholar
  63. 63.
    H. Endo, S. Hachiya, T. Sekiya, K. Kawasaki, Rotational viscosity of ferroelectric liquid-crystalline polysiloxanes. Liq. Cryst. 12, 147–155 (1992)CrossRefGoogle Scholar
  64. 64.
    A.K. Gathania, B. Singh, K.K. Raina, Switching Dynamics in Ferroelectric Liquid Crystal Mixture. Jpn. J. Appl. Phys. 43, 8168–8172 (2004)CrossRefADSGoogle Scholar
  65. 65.
    M. Irie, Diarylethenes for memories and switches. Chem. Rev. 100, 1685–1716 (2000)CrossRefGoogle Scholar
  66. 66.
    B.L. Feringa (ed.), Molecular Switches (Wiley, Weinheim, 2001)Google Scholar
  67. 67.
    H. Tian, S. Yang, Recent progresses on diarylethene based photochromic switches. Chem. Soc. Rev. 33, 85–97 (2004)CrossRefGoogle Scholar
  68. 68.
    T. Koshido, T. Kawai, K. Yoshino, Novel photomemory effects in photochromic dye-doped conducting polymer and amorphous photochromic dye layer. Synth. Met. 73, 257–260 (1995)CrossRefGoogle Scholar
  69. 69.
    S. Murase, M. Teramoto, H. Furukawa, Y. Miyashita, K. Horie, Photochemically induced fluorescence control with intermolecular energy transfer from a fluorescent dye to a photochromic diarylethene in a polymer film. Macromolecules 36, 964–966 (2003)CrossRefADSGoogle Scholar
  70. 70.
    D. Medvedeva, A. Bobrovsky, N. Boiko, V. Shibaev, I. Zavarzin, M. Kalik, M. Krayushkin, A combination of selective light reflection and fluorescence modulation in a cholesteric polymer matrix. Macromol. Rapid Commun. 26, 177–182 (2005)CrossRefGoogle Scholar
  71. 71.
    T. Kawai, T. Sasakia, M. Irie, A photoresponsive laser dye containing photochromic dithienylethene units. Chem. Commun. 711–712 (2001)Google Scholar
  72. 72.
    T.B. Norsten, N.R. Branda, Axially coordinated porphyrinic photochromes for non-destructive information processing. Adv. Mater. 13, 347–349 (2001)CrossRefGoogle Scholar
  73. 73.
    T. Kawai, T. Kunitake, M. Irie, Novel photochromic conducting polymer having diarylethene derivative in the main chain. Chem. Lett. 9, 905–906 (1999)CrossRefGoogle Scholar
  74. 74.
    H. Cho, E. Kim, Highly fluorescent and photochromic diarylethene oligomer bridged by p-phenylenevinylene. Macromolecules 35, 8684–8687 (2002)CrossRefADSGoogle Scholar
  75. 75.
    S. Wang, X. Li, B. Chen, Q. Luo, H. Tian, Photochromic copolymers containing bisthienylethene units. Macromol. Chem. Phys. 205, 1497–1507 (2004)CrossRefGoogle Scholar
  76. 76.
    Y.C. Jeong, S.I. Yang, E. Kim, K.H. Ahn, A high-content diarylethene photochromic polymer for an efficient fluorescence modulation. Macromol. Rapid Commun. 27, 1769–1773 (2006)CrossRefGoogle Scholar
  77. 77.
    M. Irie, K. Sakemura, M. Okinaka, K. Uchida, Photochromism of dithienylethenes with electron-donating substituents. J. Org. Chem. 60, 8305–8309 (1995)CrossRefGoogle Scholar
  78. 78.
    D. Demus, J. Goodby, G.W. Gray, H.W. Spiess, V.I. Vill, Handbook of Liquid Crystals (Wiley, Weinheim, 1998)Google Scholar

Copyright information

© © The Author(s) 2014

Authors and Affiliations

  1. 1.Department of Polymer ChemistryKyoto UniversityKatsuraJapan

Personalised recommendations