Nanotechnology and Nanomaterials in Photodeformable Liquid Crystalline Polymers

Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

The combination of nanomaterials and ordered deformable soft materials is emerging as an enabling system in nanoscience and nanotechnology. In this context, nanomaterial functionalized photoresponsive liquid crystalline polymers are very promising and versatile systems due to their dynamic function. Moreover, the unique characteristic of nanomaterials combined with the mechanical, self-organizing and stimuli-responsive properties of deformable liquid crystalline polymers opens up new and exciting possibilities. In this chapter, we present recent developments of photodeformable behaviors of liquid crystalline polymers functionalized with nanomaterials. The main emphasis revolves around how the physicochemical properties of different nanomaterials modulate the reversible photomechanical behaviors of liquid crystalline polymers and their potential application in devices such as optically controlled switches and soft actuators.

Keywords

Nanocomposite Film Liquid Crystalline Polymer Nanoporous Structure Dielectric Elastomer Shape Memory Polymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Q. Li, Intelligent Stimuli-Responsive Materials: From Well-Defined Nanostructures to Applications (Wiley, Hoboken, 2012)Google Scholar
  2. 2.
    H.F. Yu, T. Ikeda, Photocontrollable liquid-crystalline actuators. Adv. Mater. 23, 2149–2180 (2011)CrossRefGoogle Scholar
  3. 3.
    Y. Wang, Q. Li, Light-driven chiral molecular switched of motors in liquid crystals. Adv. Mater. 24, 1926–1945 (2012)CrossRefGoogle Scholar
  4. 4.
    M.H. Li, P. Keller, J.Y. Yang, P.-A. Albouy, An artificial muscle with lamellar structure based on a nematic triblock copolymer. Adv. Mater. 16, 1922–1925 (2004)CrossRefGoogle Scholar
  5. 5.
    A. Lendlein, R. Langer, Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296, 1673–1676 (2002)CrossRefADSGoogle Scholar
  6. 6.
    L. Ionov, Biomimetic 3D self-assembling biomicroconstructs by spontaneous deformation of thin polymer films. J. Mater. Chem. 22, 19366–19375 (2012)CrossRefGoogle Scholar
  7. 7.
    A. Lendlein, S. Kelth, Shape-memory polymers. Angew. Chem. Int. Ed. 41, 2034–2057 (2002)CrossRefGoogle Scholar
  8. 8.
    T. Xie, Tunable polymer multi-shape memory effect. Nature 464, 267–270 (2010)CrossRefADSGoogle Scholar
  9. 9.
    Y. Osada, H. Okuzaki, H. Hori, A polymer gel with electrically driven motility. Nature 355, 242–244 (1992)CrossRefADSGoogle Scholar
  10. 10.
    K. Kajiwara, S.B. Rossmurphy, Polymers-synthetic gels on the move. Nature 355, 208–209 (1992)CrossRefADSGoogle Scholar
  11. 11.
    E. Smela, Conjugated polymer actuators for biomedical applications. Adv. Mater. 15, 481–494 (2003)CrossRefGoogle Scholar
  12. 12.
    W. Lu, A.G. Fadeev, B. Qi, E. Smela, B.R. Mattes, J. Ding, G.M. Spinks, J. Mazukiewicz, D. Zhou, G.G. Wallace, D.R. MacFarlane, S.A. Forsyth, M. Forsyth, Use of ionic liquids for pi-conjugated polymer electrochemical devices. Science 297, 983–987 (2002)CrossRefADSGoogle Scholar
  13. 13.
    Q.M. Zhang, V. Bhatti, X. Zhao, Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science 280, 2101–2104 (1998)CrossRefADSGoogle Scholar
  14. 14.
    Q.M. Zhang, H.F. Li, M. Poh, F. Xia, Z.Y. Cheng, H.S. Xu, C. Huang, An all-organic composite actuator material with a high dielectric constant. Nature 419, 284–287 (2002)CrossRefADSGoogle Scholar
  15. 15.
    F. Ilievski, A.D. Mazzeo, R.F. Shepherd, X. Chen, G.M. Whitesides, Soft robotics for chemists. Angew. Chem. Int. Ed. 123, 1930–1935 (2011)CrossRefGoogle Scholar
  16. 16.
    J.S. Leng, X. Lan, Y.J. Liu, S.Y. Du, Shape-memory polymers and their composites: stimulus methods and applications. Prog. Mater. Sci. 56, 1077–1135 (2011)CrossRefGoogle Scholar
  17. 17.
    M. Behl, A. Lendlein, Triple-shape polymers. J. Mater. Chem. 20, 3335–3345 (2010)CrossRefGoogle Scholar
  18. 18.
    S. Daunert, E.A. Moschou, M.J. Madou, L.G. Bachas, Voltage-switchable artificial muscles actuating at near neutral pH. Sens. Actuators 115, 379–383 (2006)CrossRefGoogle Scholar
  19. 19.
    J.S. Leng, W.M. Huang, X. Lan, Y.J. Liu, S.Y. Du, Significantly reducing electrical resistivity by forming conductive Ni chains in a polyurethane shape-memory polymer/carbon-black composite. Appl. Phys. Lett. 92, 204101 (2008)CrossRefADSGoogle Scholar
  20. 20.
    R. Mohr, K. Kratz, T. Weigel, M. Lucka-Gabor, M. Moneke, A. Lendlein, Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc. Natl. Acad. Sci. U.S.A. 103, 3540–3545 (2006)CrossRefADSGoogle Scholar
  21. 21.
    K.D. Harris, C.W.M. Bastiaansen, J. Lub, D.J. Broer, Self-assembled polymer films for controlled agent-driven motion. Nano Lett. 5, 1857–1860 (2005)CrossRefADSGoogle Scholar
  22. 22.
    J. Wei, Y. Yu, Photodeformable polymer gels and crosslinked liquid-crystalline polymers. Soft Matter 8, 8050–8059 (2012)CrossRefADSGoogle Scholar
  23. 23.
    C. Yelamaggad, S.K. Prasad, Q. Li, in Chapter 4 in Liquid Crystals Beyond Displays: Chemistry, Physics, and Applications, ed. by Q. Li. Photo-Stimulated Phase Transformations in Liquid Crystals and Their Non-display Applications (Wiley, Hoboken, 2012)Google Scholar
  24. 24.
    H.F. Yu, A. Asaoka, A. Shishido, T. Iyoda, T. Ikeda, Photoinduced nanoscale cooperative motion in a novel well-defined triblock copolymer. Small 3, 768–771 (2007)CrossRefGoogle Scholar
  25. 25.
    H.F. Yu, H. Liu, T. Kobayashi, Fabrication and photoresponse of supramolecular liquid-crystalline microparticles. ACS Appl. Mater. Interfaces 3, 1333–1340 (2011)CrossRefGoogle Scholar
  26. 26.
    Y. Li, M. Wang, T.J. White, T.J. Bunning, Q. Li, Azoarenes bearing opposite chiral configurations: light-driven dynamic reversible handedness inversion in self-organized helical superstructure. Angew. Chem. Int. Ed. 52, 8925–8929 (2013)CrossRefGoogle Scholar
  27. 27.
    T.-H. Lin, Y. Li, C.-T. Wang, H.-C. Jau, C.-W. Chen, C–.C. Li, H.K. Bisoyi, T.J. Bunning, Q. Li, Red, green and blue reflections enabled in optically tunable self-organized 3D cubic nanostructured thin film. Adv. Mater. 25, 5050–5054 (2013)CrossRefGoogle Scholar
  28. 28.
    M. Mathews, R. Zola, S. Hurley, D.-K. Yang, T.J. White, T.J. Bunning, Q. Li, Light-driven reversible handedness inversion in self-organized helical superstructures. J. Am. Chem. Soc. 132, 18361–18366 (2010)CrossRefGoogle Scholar
  29. 29.
    H.F. Yu, T. Iyoda, T. Ikeda, Photoinduced alignment of nanocylinders by supramolecular cooperative motions. J. Am. Chem. Soc. 128, 11010–11011 (2006)CrossRefGoogle Scholar
  30. 30.
    R. Sun, X. Ma, M. Gao, H. Tian, Q. Li, Light-driven linear helical supramolecular polymer formed by molecular-recognition-directed self-assembly of bis-p-sulfonatocalix[4]arene and pseudorotaxane. J. Am. Chem. Soc. 135, 5990–5993 (2013)CrossRefGoogle Scholar
  31. 31.
    H.F. Yu, J. Li, T. Ikeda, T. Iyoda, Macroscopic parallel nanocylinder array fabrication using a simple rubbing technique. Adv. Mater. 18, 2213–2215 (2006)CrossRefGoogle Scholar
  32. 32.
    T. Ikeda, M. Nakano, Y. Yu, O. Tsutsumi, A. Kanazawa, Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light. Adv. Mater. 15, 201–205 (2003)CrossRefGoogle Scholar
  33. 33.
    M. Konda, Y.L. Yu, T. Ikeda, How does the initial alignment of mesogens affect the photoinduced bending behavior of liquid-crystalline elastomers? Angew. Chem. Int. Ed. 45, 1378–1382 (2006)CrossRefGoogle Scholar
  34. 34.
    M. Yamada, M. Kondo, R. Miyasato, Y. Naka, J. Mamiya, M. Kinoshita, A. Shishido, Y. Yu, C.J. Barrett, T. Ikeda, Photomobile polymer materials-various three-dimensional movements. J. Mater. Chem. 19, 60–62 (2009)CrossRefGoogle Scholar
  35. 35.
    M. Yamada, M. Kondo, J. Mamiya, Y. Yu, M. Kinoshita, C.J. Barrett, T. Ikeda, Photomobile polymer materials: towards light-driven plastic motors. Angew. Chem. Int. Ed. 47, 4986–4988 (2008)CrossRefGoogle Scholar
  36. 36.
    C.L. Oosten, C.W.M. Bastiaansen, D.J. Broer, Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nature Mater. 8, 677–682 (2009)CrossRefADSGoogle Scholar
  37. 37.
    H. Finkelmann, H.J. Kock, H. Rehage, Investigations on liquid crystalline polysiloxanes, 3.Liquid crystalline elastomers-a new type of liquid crystalline material. Makromol. Chem. Rapid Commun. 2, 317–322 (1981)CrossRefGoogle Scholar
  38. 38.
    A. Rvabchun, A. Bobrovskv, J. Stumpe, V. Shibaev, Novel generation of liquid crystalline photo-actuators based on stretched porous polyethylene films. Macromol. Rapid Commun. 33, 991–997 (2012)CrossRefGoogle Scholar
  39. 39.
    W. Wang, X. Sun, W. Wu, H. Peng, Y. Yu, Photoinduced deformation of crosslinked liquid-crystalline polymer film oriented by a highly aligned carbon nanotube sheet. Angew. Chem. Int. Ed. 51, 4644–4647 (2012)CrossRefGoogle Scholar
  40. 40.
    X.M. Sun, W. Wang, L.B. Qiu, W.H. Guo, Y.L. Yu, H.S. Peng, Unusual reversible photomechanical actuation in polymer/nanotube composites. Angew. Chem. Int. Ed. 51, 8520–8524 (2012)CrossRefGoogle Scholar
  41. 41.
    H.M. Chen, Z.P. Zhen, T. Todd, P.K. Chu, J. Xie, Nanoparticles for improving cancer diagnosis. Mater. Sci. Eng. R 74, 35–69 (2013)CrossRefGoogle Scholar
  42. 42.
    S.V. Ahir, E.M. Terentjev, Photomechanical actuation in polymer-nanotube composites. Nature Mater. 4, 491–495 (2005)CrossRefADSGoogle Scholar
  43. 43.
    L. Yang, K. Setyowati, A. Li, S. Gong, J. Chen, Reversible infrared actuation of carbon nanotubes-liquid crystalline elastomer nanocomposites. Adv. Mater. 20, 2271–2275 (2008)CrossRefGoogle Scholar
  44. 44.
    Y. Ji, Y.Y. Huang, R. Rungsawang, E.M. Terentjev, Dispersion and alignment of carbon nanotubes in liquid crystalline polymers and elastomers. Adv. Mater. 22, 3436–3440 (2010)CrossRefGoogle Scholar
  45. 45.
    C.S. Li, Y. Liu, C.-W. Lo, H.R. Jiang, Reversible white-light actuation of carbon nanotube incorporated liquid crystalline elastomer nanocomposites. Soft Matter 7, 7511–7516 (2011)CrossRefADSGoogle Scholar
  46. 46.
    R.R. Kohimeyer, J. Chen, Wavelength-selective, IR light-driven hinges based on liquid crystalline elastomer composites. Angew. Chem. Int. Ed. 52, 9234–9237 (2013)CrossRefGoogle Scholar
  47. 47.
    C. Xue, Y. Xue, L. Dai, A. Urbas, Q. Li, Size and shape dependent fluorescence quenching of gold nanoparticles on perylene dye. Adv. Opt. Mater. 1, 581–587 (2013)CrossRefGoogle Scholar
  48. 48.
    C. Xue, K. Gutierrez-Cuevas, M. Gao, A. Urbas, Q. Li, Photo-modulated self-assembly of hydrophobic thiol monolayer-protected gold nanorods and their alignment in thermotropic liquid crystal. J. Phys. Chem. C 117, 21603–21608 (2013)CrossRefGoogle Scholar
  49. 49.
    C. Xue, O. Birel, Y. Li, X. Ma, M. Gao, A. Urbas, Q. Li, Metal complex monolayer-protected gold nanorods: a parallel facile synthesis and self-assembly. J. Colloid Interface Sci. 398, 1–6 (2013)CrossRefGoogle Scholar
  50. 50.
    X. Ma, A. Urbas, Q. Li, Controllable self-assembling of gold nanorods via on and off supramolecular noncovalent interactions. Langmuir 28, 16263–16267 (2012)CrossRefGoogle Scholar
  51. 51.
    J.M. El Khoury, X. Zhou, L. Qu, L. Dai, A. Urbas, Q. Li, Organo-soluble photoresponsive azo hybrid gold nanorods. Chem. Commun. 2109–2111 (2009)Google Scholar
  52. 52.
    M. Rycenga, C.M. Cobley, J. Zeng, W.Y. Li, C.H. Moran, Q. Zhang, D. Qin, Y.N. Xia, Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 111, 3669–3712 (2011)CrossRefGoogle Scholar
  53. 53.
    R.Y. Yin, W.X. Xu, M. Kondo, C. Yen, J. Mamiya, T. Ikeda, Y.L. Yu, Can sunlight drive the photoinduced bending of polymer films? J. Mater. Chem. 19, 3141–3143 (2009)CrossRefGoogle Scholar
  54. 54.
    W. Wu, L.M. Yao, T.S. Yang, R.Y. Yin, F.Y. Li, Y.L. Yu, NIR-light-induced deformation of cross-linked liquid-crystal polymer using upconversion nanophosphors. J. Am. Chem. Soc. 133, 15810–15813 (2011)CrossRefGoogle Scholar
  55. 55.
    Z. Jiang, M. Xu, F.Y. Li, Y.L. Yu, Red-light controllable liquid-crystal soft actuators via low-power excited upconversion based on triplet-triplet annihilation. J. Am. Chem. Soc. 135, 16446–16453 (2013)Google Scholar
  56. 56.
    F.T. Cheng, R.Y. Yin, Y.Y. Zhang, C.C. Yen, Y.L. Yu, Fully plastic microrobots which manipulate objects using only visible light. Soft Matter 6, 3447–3449 (2010)CrossRefADSGoogle Scholar

Copyright information

© © The Author(s) 2014

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering, College of EngineeringPeking UniversityBeijingChina
  2. 2.Liquid Crystal InstituteKent State UniversityKentUSA

Personalised recommendations