Advertisement

Holographic Liquid Crystals for Nanophotonics

  • Timothy D. Wilkinson
  • Haider Butt
  • Yunuen Montelongo
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

Nanotechnology offers a new paradigm in ways of controlling light in optical systems. Optically enhanced effects such plasmonic resonances and nano-antennas combined with diffraction and photonic bandgap effects can create new mechanisms to enhance the performance of modulation technologies in applications such as three dimensional displays. The power of these optical effects can then be made even more effective by adding in a variable refractive index material such a liquid crystal. This allows the optical properties to be tuned or modulated and creates a new class of optical devices which utilise features on the nano-scale. This chapter pulls together the various strands that have been developed in this area to make an initial investigation into these types of devices. The power of diffraction is introduced to propagate light in a manner which ideally suits nanotechnology. This is then combined with the algorithms used to create computer generated holograms to demonstrate that the diffraction process is indeed the key to the optical control mechanisms at length scales of the order of the wavelength of the light. The key properties of carbon nanotubes and liquid crystals are then introduced to provide the means to create enhanced diffraction through resonant effects which can then be tuned through the variable refractive index properties of the liquid crystals. The most important property of the nanotechnology is the ability to have electrically conductive structures on the nanometre length scale, which allows the rules of electric field interaction to ne manipulated by plasmonics. These effects are demonstrated using both conducting multiwall carbon nanotubes as well as silver nano-antennas. Plasmonic resonance in arrays of nanotubes show the predicted wavelength cut off due to a negative dielectric constant. The same effects are then linked with diffraction to create quasi-crystalline diffraction patterns and fully synthetic computer generated holograms. These effects are expanded further with the silver nano-antennas, where the enhanced resonance effects allow the control of polarisation as well as the wavefront through diffraction. Finally the liquid crystal element of variable refractive index is added to the devices to control the resonance and tune its performance. While this is still at a very early stage of research, it already demonstrates the power and versatility created by the combination of these different optical effects.

Keywords

Plasma Enhance Chemical Vapor Deposition Transversal Polarisation Variable Refractive Index Plasmonic Effect Nanophotonic Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    B. Brown, A. Lohmann, Complex spatial filtering with binary masks. Appl. Opt. 5, 967–969 (1966)CrossRefADSGoogle Scholar
  2. 2.
    W. Lee, Sampled Fourier transform hologram generated by computer. Appl. Opt. 9, 639–643 (1970)CrossRefADSGoogle Scholar
  3. 3.
    A. Jendral, R. Brouer, O. Bryngdahl, Synthetic image holograms: computation and properties. Opt. Comm. 109, 47–53 (1994)CrossRefADSGoogle Scholar
  4. 4.
    M. Stanley et al., 100-Megapixel computer-generated holographic images from active tiling: a dynamic and scalable electro-optic modulator system. Proc. SPIE 5005, 247–258 (2003)CrossRefGoogle Scholar
  5. 5.
    R.H.-Y. Chen, T.D. Wilkinson, Computer generated hologram with geometric occlusion using GPU-accelerated depth buffer rasterisation for 3D display. Appl. Opt. 48, 4246–4255 (2009)CrossRefADSGoogle Scholar
  6. 6.
    D. Gabor, A new microscopic principle. Nature 161, 777 (1948)Google Scholar
  7. 7.
    D. Gabor, Microscopy by reconstructed wave-fronts. Proc. Roy. Soc. (London) A 197, 454 (1949)Google Scholar
  8. 8.
    E.N. Leith, J. Upatnieks, Wavefront reconstruction with diffused illumination and three-dimensional objects. J. Opt. Soc. Am. 54, 1295–1301 (1964)CrossRefADSGoogle Scholar
  9. 9.
    S. Tay, P.-A. Blanche, R. Voorakaranam, A.V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R.A. Norwood, M. Yamamoto, N. Peyghambarian, An updatable holographic three-dimensional display. Nature 451, 694–698 (2008)CrossRefADSGoogle Scholar
  10. 10.
    T.D. Wilkinson, X. Wang, K.B.K. Teo, W.I. Milne, Sparse multiwall carbon nanotube electrode arrays for liquid-crystal photonic devices. Adv. Mater. 20, 363–366 (2008)CrossRefGoogle Scholar
  11. 11.
    H. Butt, Q. Dai, P. Farah, T. Butler, T.D. Wilkinson, J.J. Baumberg, G.A.J. Amaratunga, Metamaterial high pass filter based on periodic wire arrays of multiwalled carbon nanotubes. Appl. Phys. Lett. 97, 163102 (2010)CrossRefADSGoogle Scholar
  12. 12.
    J.W. Goodman, Introduction to Fourier Optics, 2nd edn. (McGraw-Hill Companies, New York, 2005), pp. 55–58Google Scholar
  13. 13.
    R.G. Wilson, Fourier Series and Optical Transform Techniques in Contemporary Optics (Wiley, New York, 1995)Google Scholar
  14. 14.
    H. Dammann, K. Görtler, High-efficiency in-line multiple imaging by means of multiple phase holograms. Opt. Commun. 3, 312–315 (1971)CrossRefADSGoogle Scholar
  15. 15.
    M.A. Seldowitz, J.P. Allebach, D.W. Sweeney, Synthesis of digital holograms by direct binary search. Appl. Opt. 26, 2788–2798 (1987)CrossRefADSGoogle Scholar
  16. 16.
    R.W. Gerchberg, W.O. Saxon, A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237–246 (1972)Google Scholar
  17. 17.
    J.H. Holland, Genetic algorithms. Sci. Am. 267, 66–72 (1992)Google Scholar
  18. 18.
    A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, R.E. Smalley, Crystalline ropes of metallic carbon nanotubes. Science 273, 483–487 (1996)CrossRefADSGoogle Scholar
  19. 19.
    S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991) Google Scholar
  20. 20.
    K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, D.G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk, D. Pribat, Uniform patterned growth of carbon nanotubes without surface carbon. Appl. Phys. Lett. 79, 1534–1536 (2001)CrossRefADSGoogle Scholar
  21. 21.
    W.I. Milne, K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, S.B. Lee, D.G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J.P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, V.T. Binh, Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition. Diam. Relat. Mater. 12, 422–428 (2003)CrossRefADSGoogle Scholar
  22. 22.
    P.J. Collings, M. Hird, Introduction to Liquid Crystals, Chemisrty and Physics (Taylor & Francis Group, London, 1998)Google Scholar
  23. 23.
    M.F. Lin, F.L. Shyu, R.B. Chen, Optical properties of well-aligned multiwalled carbon nanotube bundles. Phys. Rev. B 61, 14114 (2000)CrossRefADSGoogle Scholar
  24. 24.
    J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Low frequency plasmons in thin-wire structures. J. Phys.: Condens. Matter 10, 4785–4809 (1998)Google Scholar
  25. 25.
    P. Drude, Zur Elektronentheorie der metalle. Ann. Phys. 306, 566 (1900)CrossRefGoogle Scholar
  26. 26.
    P.G. Etchegoin, E.C. Le Ru, M. Meyer, An analytic model for the optical properties of gold. J. Chem. Phys. 125, 164705 (2006)CrossRefADSGoogle Scholar
  27. 27.
    H. Butt, Q. Dai, R. Rajesekharan, T.D. Wilkinson, G.A.J. Amaratunga, Plasmonic band gaps and waveguide effects in carbon nanotube arrays based metamaterials. ACS Nano 5, 9138–9143 (2011)CrossRefGoogle Scholar
  28. 28.
    Y. Montelongo, H. Butt, T. Butler, G.A.J. Amaratunga, T.D. Wilkinson, Computer generated holograms for carbon nanotube arrays. Nanoscale 5, 4217–4222 (2013)CrossRefADSGoogle Scholar
  29. 29.
    H. Butt, T. Butler, Y. Montelongo, R. Ranjith, G.A.J. Amaratunga, T.D. Wilkinson, Continuous diffraction patterns from circular arrays of carbon nanotubes’. Appl. Phys. Lett. 101, 251102 (2012)CrossRefADSGoogle Scholar
  30. 30.
    M.A. Kaliteevski, S. Brand, R.A. Abram, T.F. Krauss, R. De La Rue, P. Millar, Two-dimensional Penrose-tiled photonic quasicrystals: from diffraction pattern to band structure. Nanotechnology 11, 274 (2000)Google Scholar
  31. 31.
    H. Butt, Y. Montelongo, T. Butler, R. Rajesekharan, Q. Dai, S.G. Shiva-Reddy, G.A. Amaratunga, T.D. Wilkinson, Carbon nanotube based high resolution holograms. Adv. Mater. (2012). doi: 10.1002/adma.201202593 Google Scholar
  32. 32.
    S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007)Google Scholar
  33. 33.
    G.W. Bryant, F.J. Garcia de Abajo, J. Aizpurua, Mapping the plasmon resonances of metallic nanoantennas. Nano Lett. 8, 631–636 (2008)CrossRefADSGoogle Scholar
  34. 34.
    L. Novotny, Effective wavelength scaling for optical antennas. Phys. Rev. Lett. 98, 266802 (2007)CrossRefADSGoogle Scholar
  35. 35.
    W. Yu, K. Takahara, T. Konishi, T. Yotsuya, Y. Ichioka, Fabrication of multilevel phase computer-generated hologram elements based on effective medium theory. Appl. Opt. 39, 3531–3536 (2000)CrossRefADSGoogle Scholar
  36. 36.
    S. Larouche, Y.-J. Tsai, T. Tyler, N.M. Jokerst, D.R. Smith, Infrared metamaterial phase holograms. Nat. Mater. 11, 450–454 (2012)CrossRefADSGoogle Scholar
  37. 37.
    W. Khunsin, B. Brian, J. Dorfmüller, M. Esslinger, R. Vogelgesang, C. Etrich, C. Rockstuhl, A. Dmitriev, K. Kern, Long-distance indirect excitation of nanoplasmonic resonances. Nano Lett. 11, 2765–2769 (2011)CrossRefGoogle Scholar
  38. 38.
    P. West, S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, A. Boltasseva, Searching for better plasmonic materials. Laser Photonics Rev. 4, 795–808 (2010)CrossRefGoogle Scholar
  39. 39.
    T. Hessler, M. Rossi, R.E. Kunz, M.T. Gale, Analysis and optimization of fabrication of continuous-relief diffractive optical elements. Appl. Opt. 37, 4069–4079 (1998)CrossRefADSGoogle Scholar
  40. 40.
    K.R. Catchpole, A. Polman, Design principles for particle plasmon enhanced solar cells. Appl. Phys. Lett. 93, 191113 (2008)CrossRefADSGoogle Scholar

Copyright information

© © The Author(s) 2014

Authors and Affiliations

  • Timothy D. Wilkinson
    • 1
  • Haider Butt
    • 2
  • Yunuen Montelongo
    • 1
  1. 1.Electrical Engineering DivisionUniversity of CambridgeCambridgeUK
  2. 2.School of Mechanical EngineeringUniversity of BirminghamEdgbastonUK

Personalised recommendations