Broadcast Steganography

  • Nelly Fazio
  • Antonio R. Nicolosi
  • Irippuge Milinda Perera
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8366)

Abstract

We initiate the study of steganography (BS), an extension of steganography to the multi-recipient setting. BS enables a sender to communicate covertly with a dynamically designated set of receivers, so that the recipients recover the original content, while unauthorized users and outsiders remain unaware of the covert communication. One of our main technical contributions is the introduction of a new variant of anonymous broadcast encryption that we term outsider-anonymous broadcast encryption with pseudorandom ciphertexts((oABE$). Our oABE$ construction achieves sublinear ciphertext size and is secure in the standard model. Besides being of interest in its own right, oABE$ enables an efficient construction of BS secure in the standard model against adaptive adversaries with sublinear communication complexity.

Keywords

Steganography Broadcast Encryption Receiver Anonymity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: Consistency properties, relation to Anonymous IBE, and extensions. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 205–222. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Agrawal, S., Boyen, X.: Identity-based encryption from lattices in the standard model (2009) (manuscript), http://www.cs.stanford.edu/~xb/ab09/
  3. 3.
    von Ahn, L., Hopper, N.J.: Public-key steganography. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 323–341. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    von Ahn, L., Hopper, N.J., Langford, J.: Covert two-party computation. In: ACM Symposium on Theory of Computing, STOC, pp. 513–522 (2005)Google Scholar
  5. 5.
    Anderson, R., Petitcolas, F.: On the limits of steganography. IEEE Journal on Selected Areas in Communications 16(4), 474–481 (1998)CrossRefGoogle Scholar
  6. 6.
    Backes, M., Cachin, C.: Public-key steganography with active attacks. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 210–226. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Barth, A., Boneh, D., Waters, B.: Privacy in encrypted content distribution using private broadcast encryption. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 52–64. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Berkovits, S.: How to broadcast a secret. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 535–541. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  9. 9.
    Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Boneh, D., Katz, J.: Improved efficiency for CCA-secure cryptosystems built using identity-based encryption. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 87–103. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (without random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–307. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Cachin, C.: An information-theoretic model for steganography. Information and Computation 192(1), 41–56 (2004)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Cash, D.M., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and applications. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Chandran, N., Goyal, V., Ostrovsky, R., Sahai, A.: Covert multi-party computation. In: IEEE Symposium on Foundations of Computer Science, FOCS, pp. 238–248 (2007)Google Scholar
  15. 15.
    Dedic, N., Itkis, G., Reyzin, L., Russell, S.: Upper and Lower Bounds on Black-Box Steganography. Journal of Cryptology 22(3), 365–394 (2009)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Dodis, Y., Fazio, N.: Public key broadcast encryption for stateless receivers. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 61–80. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Dodis, Y., Fazio, N.: Public-key trace and revoke scheme secure against adaptive chosen ciphertext attack. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 100–115. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Dodis, Y., Fazio, N., Kiayias, A., Yung, M.: Scalable public-key tracing and revoking. In: ACM Symposium on Principles of Distributed Computing, pp. 190–199 (2003); invited to the Special Issue of Journal of Distributed Computing, PODC 2003 (2003)Google Scholar
  19. 19.
    Dodis, Y., Fazio, N., Lysyanskaya, A., Yao, D.: ID-based encryption for complex hierarchies with applications to forward security and broadcast encryption. In: ACM Conference on Computer and Communications Security, pp. 354–363 (2004)Google Scholar
  20. 20.
    Dodis, Y., Katz, J.: Chosen-ciphertext security of multiple encryption. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 188–209. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Fazio, N.: On Cryptographic Techniques for Digital Rights Management. Ph.D. thesis, New York University (2006)Google Scholar
  22. 22.
    Fazio, N., Nicolosi, A.R., Perera, I.M.: Broadcast steganography. Cryptology ePrint Archive, Report 2013/078 (2013)Google Scholar
  23. 23.
    Fazio, N., Perera, I.M.: Outsider-anonymous broadcast encryption with sublinear ciphertexts. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 225–242. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  24. 24.
    Fazio, N., Perera, I.M.: Outsider-anonymous broadcast encryption with sublinear ciphertexts. Cryptology ePrint Archive, Report 2012/129 (2012), full Version of [23]Google Scholar
  25. 25.
    Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  26. 26.
    Garay, J.A., Staddon, J., Wool, A.: Long-lived broadcast encryption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 333–352. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  27. 27.
    Gentry, C.: Practical identity-based encryption without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  28. 28.
    Gentry, C., Waters, B.: Adaptive security in broadcast encryption systems (with short ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 171–188. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  29. 29.
    Halevy, D., Shamir, A.: The LSD broadcast encryption scheme. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 47–60. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  30. 30.
    Hopper, N.J.: Toward a Theory of Steganography. Ph.D. thesis, Carnegie Mellon University (2004)Google Scholar
  31. 31.
    Hopper, N.J.: On steganographic chosen covertext security. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 311–323. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  32. 32.
    Hopper, N.J., Langford, J., von Ahn, L.: Provably Secure Steganography. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 77–92. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  33. 33.
    Impagliazzo, R., Zuckerman, D.: How to recycle random bits. In: IEEE Symposium on Foundations of Computer Science—FOCS, pp. 248–253 (1989)Google Scholar
  34. 34.
    Katzenbeisser, S., Petitcolas, F.A.: Defining security in steganographic systems. In: Security and Watermarking of Multimedia Contents IV, pp. 50–56 (2002)Google Scholar
  35. 35.
    Kiayias, A., Raekow, Y., Russell, A.: Efficient steganography with provable security guarantees. In: Barni, M., Herrera-Joancomartí, J., Katzenbeisser, S., Pérez-González, F. (eds.) IH 2005. LNCS, vol. 3727, pp. 118–130. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  36. 36.
    Kiayias, A., Russell, A., Shashidhar, N.: Key-efficient steganography with provable security guarantees. In: Information Hiding—IH, pp. 118–130 (2012)Google Scholar
  37. 37.
    Kiayias, A., Samari, K.: Lower bounds for private broadcast encryption. In: Kirchner, M., Ghosal, D. (eds.) IH 2012. LNCS, vol. 7692, pp. 176–190. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  38. 38.
    Le, T., Kurosawa, K.: Efficient Public Key Steganography Secure Against Adaptive Chosen Stegotext Attacks. Cryptology ePrint Archive, Report 2003/244 (2003)Google Scholar
  39. 39.
    Libert, B., Paterson, K.G., Quaglia, E.A.: Anonymous broadcast encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 206–224. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  40. 40.
    Lysyanskaya, A., Meyerovich, M.: Provably Secure Steganography with Imperfect Sampling. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 123–139. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  41. 41.
    Mazurczyk, W., Karas, M., Szczypiorski, K.: Skyde: A skype-based steganographic method (2013), http://arxiv.org/abs/1301.3632
  42. 42.
    Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  43. 43.
    Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)Google Scholar
  44. 44.
    Simmons, G.: The Prisoners’ Problem and the Subliminal Channel. In: Advances in Cryptology—CRYPTO, pp. 51–67 (1983)Google Scholar
  45. 45.
    The Economist: Speaking with silence (February 2013)Google Scholar
  46. 46.
    Zuckerman, D.: General weak random sources. In: IEEE Symposium on Foundations of Computer Science—FOCS, pp. 534–543 (1990)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Nelly Fazio
    • 1
    • 3
  • Antonio R. Nicolosi
    • 2
  • Irippuge Milinda Perera
    • 3
  1. 1.The City College of CUNYUSA
  2. 2.Stevens Institute of TechnologyUSA
  3. 3.The Graduate CenterCUNYUSA

Personalised recommendations