Abstract
We present a new approach to the compression technique of Lyubashevsky et al. [17,13] for lattice-based signatures based on learning with errors (LWE). Our ideas seem to be particularly suitable for signature schemes whose security, in the random oracle model, is based on standard worst-case computational assumptions. Our signatures are shorter than any previous proposal for provably-secure signatures based on standard lattice problems: at the 128-bit level we improve signature size from (more than) 16500 bits to around 9000 to 12000 bits.
Keywords
- Lattice-based signatures
- learning with errors
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Albrecht, M.R., Fitzpatrick, R., Göpfert, F.: On the Efficacy of Solving LWE by Reduction to Unique-SVP. To appear Proceedings of International Conference on Information Security and Cryptology (2013)
Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast Cryptographic Primitives and Circular-Secure Encryption Based on Hard Learning Problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)
Bellare, M., Neven, G.: Multi-Signatures in the Plain Public-Key Model and a General Forking Lemma. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.) ACM CCS 2006, pp. 390–399. ACM (2006)
Biswas, B., Sendrier, N.: McEliece Cryptosystem Implementation: Theory and Practice. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 47–62. Springer, Heidelberg (2008)
Böhl, F., Hofheinz, D., Jager, T., Koch, J., Seo, J.H., Striecks, C.: Practical Signatures From Standard Assumptions. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 461–485. Springer, Heidelberg (2013)
Boyen, X.: Lattice Mixing and Vanishing Trapdoors – A Framework for Fully Secure Short Signatures and More. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010)
Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical Hardness of Learning with Errors. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) STOC 2013, pp. 575–584. ACM (2013)
Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better Lattice Security Estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011)
Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice Signatures and Bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013)
Devroye, L.: Non-Uniform Random Variate Generation. Springer, New York (1986)
Galbraith, S.D.: Space-efficient variants of cryptosystems based on learning with errors (2013) (preprint)
Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for Hard Lattices and New Cryptographic Constructions. In: Dwork, C. (ed.) STOC 2008, pp. 197–206. ACM (2008)
Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical Lattice-Based Cryptography: A Signature Scheme for Embedded Systems. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012)
Liu, M., Nguyen, P.Q.: Solving BDD by Enumeration, An Update. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013)
Lyubashevsky, V.: Fiat-Shamir with Aborts: Applications to Lattice and Factoring-Based Signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg (2009)
Lyubashevsky, V., Micciancio, D.: On Bounded Distance Decoding, Unique Shortest Vectors, and the Minimum Distance Problem. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 577–594. Springer, Heidelberg (2009)
Lyubashevsky, V.: Lattice Signatures without Trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012)
Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: A cryptographic Perspective. Kluwer (2002)
Micciancio, D., Regev, O.: Lattice-Based Cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post Quantum Cryptography, pp. 147–191. Springer (2009)
Micciancio, D., Peikert, C.: Hardness of SIS and LWE with Small Parameters. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 21–39. Springer, Heidelberg (2013)
Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind Signatures. J. Cryptology 13, 361–396 (2000)
Stehlé, D., Steinfeld, R.: Making NTRUEncrypt and NTRUSign as Secure as Standard Worst-Case Problems over Ideal Lattices, Cryptology ePrint Archive: Report 2013/004 (2013)
Regev, O.: On Lattices, Learning with Errors, Random Linear Codes, and Cryptography. In: Gabow, H.N., Fagin, R. (eds.) STOC 2005, pp. 84–93. ACM (2005)
Regev, O.: On Lattices, Learning with Errors, Random Linear Codes, and Cryptography. Journal of the ACM 56(6), article 34 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Bai, S., Galbraith, S.D. (2014). An Improved Compression Technique for Signatures Based on Learning with Errors. In: Benaloh, J. (eds) Topics in Cryptology – CT-RSA 2014. CT-RSA 2014. Lecture Notes in Computer Science, vol 8366. Springer, Cham. https://doi.org/10.1007/978-3-319-04852-9_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-04852-9_2
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-04851-2
Online ISBN: 978-3-319-04852-9
eBook Packages: Computer ScienceComputer Science (R0)